Artículos de revistas
Model for neutron total cross-section at low energies for nuclear grade graphite
Fecha
2015-04Registro en:
Galván Josa, Víctor Martín; Dawidowski, Javier; Santisteban, Javier Roberto; Malamud, Florencia; Oliveira, Rafael Gustavo; Model for neutron total cross-section at low energies for nuclear grade graphite; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 780; 4-2015; 27-32
0168-9002
CONICET Digital
CONICET
Autor
Galván Josa, Víctor Martín
Dawidowski, Javier
Santisteban, Javier Roberto
Malamud, Florencia
Oliveira, Rafael Gustavo
Resumen
At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.