dc.creatorFalomir, Horacio Alberto
dc.creatorGonzález Pisani, Pablo Andrés
dc.creatorVega, Federico Gaspar
dc.creatorCárcamo, D.
dc.creatorMéndez, F.
dc.creatorLoewe, M.
dc.date.accessioned2018-08-07T14:59:03Z
dc.date.accessioned2018-11-06T11:29:31Z
dc.date.available2018-08-07T14:59:03Z
dc.date.available2018-11-06T11:29:31Z
dc.date.created2018-08-07T14:59:03Z
dc.date.issued2016-01
dc.identifierFalomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; et al.; On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 1; 1-2016; 55202-55248
dc.identifier1751-8113
dc.identifierhttp://hdl.handle.net/11336/54415
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1853294
dc.description.abstractWe study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
dc.languageeng
dc.publisherIOP Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1088/1751-8113/49/5/055202
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNONCOMMUTATIVE PHASE SPACE
dc.subjectQUANTUM MECHANICS
dc.subjectSPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANS
dc.titleOn the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución