dc.creatorParezanović, Vladimir
dc.creatorLaurentie, Jean Charles
dc.creatorFourment, Carine
dc.creatorDelville, Joël
dc.creatorBonnet, Jean-Paul
dc.creatorSpohn, Andreas
dc.creatorDuriez, Thomas Pierre Cornil
dc.creatorCordier, Laurent
dc.creatorNoack, Bernd R.
dc.creatorAbel, Markus
dc.creatorSegond, Marc
dc.creatorShaqarin, Tamir
dc.creatorBrunton, Steven L.
dc.date.accessioned2018-03-02T20:21:54Z
dc.date.accessioned2018-11-06T11:28:22Z
dc.date.available2018-03-02T20:21:54Z
dc.date.available2018-11-06T11:28:22Z
dc.date.created2018-03-02T20:21:54Z
dc.date.issued2015-01
dc.identifierParezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-173
dc.identifier1386-6184
dc.identifierhttp://hdl.handle.net/11336/37726
dc.identifier1573-1987
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1852705
dc.description.abstractOpen- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10494-014-9581-1
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10494-014-9581-1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectACTIVE FLOW CONTROL
dc.subjectEXTREMUM SEEKING
dc.subjectGENETIC PROGRAMMING
dc.subjectMACHINE LEARNING
dc.subjectPOD
dc.subjectSHEAR FLOW
dc.subjectTURBULENCE
dc.titleMixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución