Artículos de revistas
On the topological entropy of the irregular part of v-statistics multifractal spectra
Fecha
2013-12Registro en:
Meson, Alejandro Mario; Vericat, Fernando; On the topological entropy of the irregular part of v-statistics multifractal spectra; Taylor & Francis; Journal of Dynamical Systems and Geometric Theories; 11; 1-2; 12-2013; 1-12
1726-037X
2169-0057
CONICET Digital
CONICET
Autor
Meson, Alejandro Mario
Vericat, Fernando
Resumen
Let (x, d) be a compact metric space and f : x → x, if xr is the product of r−copies of x, r ≥ 1, and φ : xr → r, then the multifractal decomposition for v −statistics is given by eφ (α) = ( x : lim n→∞ 1 nr p 0≤i1≤...≤ir≤n−1 φ ¡ f i1 (x) , ..., fir (x) ¢ = α ) . The irregular part, or historic set, of the spectrum is the set points x ∈ x, for which the limit does not exist. In this article we prove that for dynamical systems with specification, the irregular part of the v −statistics spectrum has topological entropy equal to that of the whole space x.