dc.creatorQuintana Zurro, Clara Ines
dc.creatorRedondo, Marcelo
dc.creatorTirao, German Alfredo
dc.date.accessioned2017-12-27T19:26:14Z
dc.date.accessioned2018-11-06T11:27:56Z
dc.date.available2017-12-27T19:26:14Z
dc.date.available2018-11-06T11:27:56Z
dc.date.created2017-12-27T19:26:14Z
dc.date.issued2014-02
dc.identifierTirao, German Alfredo; Redondo, Marcelo; Quintana Zurro, Clara Ines; Implementation of several mathematical algorithms to breast tissue density classification; Pergamon-Elsevier Science Ltd.; Radiation Physics and Chemistry (Oxford); 95; 2-2014; 261-263
dc.identifier0969-806X
dc.identifierhttp://hdl.handle.net/11336/31701
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1852486
dc.description.abstractThe accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd.
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.radphyschem.2013.10.006
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0969806X13005458
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBreast density classification
dc.subjectMathematical processing
dc.subjectComputer-aided diagnostic systems
dc.subjectMammography
dc.titleImplementation of several mathematical algorithms to breast tissue density classification
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución