dc.creatorAgnelli, Juan Pablo
dc.creatorGarau, Eduardo Mario
dc.creatorMorin, Pedro
dc.date.accessioned2017-02-17T20:07:26Z
dc.date.available2017-02-17T20:07:26Z
dc.date.created2017-02-17T20:07:26Z
dc.date.issued2014-02
dc.identifierAgnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro; A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces; Edp Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 6; 2-2014; 1557-1581
dc.identifier0764-583X
dc.identifierhttp://hdl.handle.net/11336/13168
dc.identifier1290-3841
dc.description.abstractIn this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.
dc.languageeng
dc.publisherEdp Sciences
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/m2an/2014010
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.esaim-m2an.org/articles/m2an/abs/2014/06/m2an140010/m2an140010.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectElliptic Problems
dc.subjectSingular Source Term
dc.subjectA Posteriori Error Estimates
dc.subjectWeighted Sobolev Spaces
dc.titleA posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución