dc.creatorMontemayor, Diana I.
dc.creatorCanepuccia, Alejandro Daniel
dc.creatorPascual, Jesus Maria
dc.creatorIribarne, Oscar Osvaldo
dc.date.accessioned2016-01-04T20:32:24Z
dc.date.accessioned2018-11-06T11:25:32Z
dc.date.available2016-01-04T20:32:24Z
dc.date.available2018-11-06T11:25:32Z
dc.date.created2016-01-04T20:32:24Z
dc.date.issued2013-03
dc.identifierMontemayor, Diana I.; Canepuccia, Alejandro Daniel; Pascual, Jesus Maria; Iribarne, Oscar Osvaldo; Aboveground biomass patterns of dominant Spartinas species and their relationship with selected abiotic variables in Argentinean SW Atlantic marshes; Springer; Estuaries and Coasts; 37; 2; 3-2013; 411-420
dc.identifier1559-2723
dc.identifierhttp://hdl.handle.net/11336/3334
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1851376
dc.description.abstractSalt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m−2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs12237-013-9688-y
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12237-013-9688-y
dc.relationinfo:eu-repo/semantics/altIdentifier/issn/1559-2723
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectABIOTIC VARIABLES
dc.subjectABOVEGROUND BIOMASS
dc.subjectREGIONAL PATTERNS
dc.subjectSPARTINA ALTERNIFLORA
dc.titleAboveground biomass patterns of dominant Spartinas species and their relationship with selected abiotic variables in Argentinean SW Atlantic marshes
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución