dc.creatorBonomo, Flavia
dc.creatorCecowski Palacio, Mariano
dc.date.accessioned2017-04-06T20:43:03Z
dc.date.accessioned2018-11-06T11:25:28Z
dc.date.available2017-04-06T20:43:03Z
dc.date.available2018-11-06T11:25:28Z
dc.date.created2017-04-06T20:43:03Z
dc.date.issued2011-05
dc.identifierBonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398
dc.identifier0381-7032
dc.identifierhttp://hdl.handle.net/11336/14910
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1851352
dc.description.abstractA new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
dc.languageeng
dc.publisherCharles Babbage Res Ctr
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCographs
dc.subjectColoring
dc.subjectList-coloring
dc.subjectμ-coloring
dc.subjectM-perfect graphs
dc.subjectPerfect graphs
dc.titleBetween coloring and list-coloring: μ-coloring
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución