dc.creator | Bonomo, Flavia | |
dc.creator | Cecowski Palacio, Mariano | |
dc.date.accessioned | 2017-04-06T20:43:03Z | |
dc.date.accessioned | 2018-11-06T11:25:28Z | |
dc.date.available | 2017-04-06T20:43:03Z | |
dc.date.available | 2018-11-06T11:25:28Z | |
dc.date.created | 2017-04-06T20:43:03Z | |
dc.date.issued | 2011-05 | |
dc.identifier | Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398 | |
dc.identifier | 0381-7032 | |
dc.identifier | http://hdl.handle.net/11336/14910 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1851352 | |
dc.description.abstract | A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown. | |
dc.language | eng | |
dc.publisher | Charles Babbage Res Ctr | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.html | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Cographs | |
dc.subject | Coloring | |
dc.subject | List-coloring | |
dc.subject | μ-coloring | |
dc.subject | M-perfect graphs | |
dc.subject | Perfect graphs | |
dc.title | Between coloring and list-coloring: μ-coloring | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |