dc.creator | Forzani, Liliana Maria | |
dc.creator | Fraiman, Ricardo | |
dc.creator | Llop Orzan, Pamela Nerina | |
dc.date.accessioned | 2017-08-03T21:33:35Z | |
dc.date.accessioned | 2018-11-06T11:24:38Z | |
dc.date.available | 2017-08-03T21:33:35Z | |
dc.date.available | 2018-11-06T11:24:38Z | |
dc.date.created | 2017-08-03T21:33:35Z | |
dc.date.issued | 2012-12 | |
dc.identifier | Forzani, Liliana Maria; Fraiman, Ricardo; Llop Orzan, Pamela Nerina; Density estimation for spatial-temporal models; Springer; Test; 22; 2; 12-2012; 321-342 | |
dc.identifier | 1133-0686 | |
dc.identifier | http://hdl.handle.net/11336/21847 | |
dc.identifier | 1863-8260 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1850972 | |
dc.description.abstract | In this paper a k-nearest neighbor type estimator of the marginal density function for a random field which evolves with time is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and nonstationary cases. In particular, the parametric rate of convergence √T is proven when the random field is stationary. The performance of the estimator is shown by applying our procedure to a real data example. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11749-012-0313-3 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11749-012-0313-3 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Density estimation | |
dc.subject | Local times | |
dc.subject | spatio-temporal data | |
dc.title | Density estimation for spatial-temporal models | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |