dc.creatorRiveros, Maria Silvina
dc.creatorUrciuolo, Marta
dc.date.accessioned2018-01-03T18:47:43Z
dc.date.accessioned2018-11-06T11:23:20Z
dc.date.available2018-01-03T18:47:43Z
dc.date.available2018-11-06T11:23:20Z
dc.date.created2018-01-03T18:47:43Z
dc.date.issued2014-04
dc.identifierUrciuolo, Marta; Riveros, Maria Silvina; Weighted inequalities for some integral operators with rough kernels; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 636-647
dc.identifier1895-1074
dc.identifierhttp://hdl.handle.net/11336/32162
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1850327
dc.description.abstractIn this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),$$ $$k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord{\left/ {\vphantom {{\Omega _i \left( x \right)} {\left| x \right|}}} \right. \kern-\nulldelimiterspace} {\left| x \right|}}^{{n \mathord{\left/ {\vphantom {n {q_i }}} \right. \kern-\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
dc.languageeng
dc.publisherVersita
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2478/s11533-013-0362-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2014.12.issue-4/s11533-013-0362-1/s11533-013-0362-1.xml
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFractional operators
dc.subjectCalderón-Zygmund operators
dc.subjectBMO
dc.subjectMuckenhoupt weights
dc.titleWeighted inequalities for some integral operators with rough kernels
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución