dc.creatorAimar, Hugo Alejandro
dc.creatorCarena, Marilina
dc.creatorIaffei, Bibiana Raquel
dc.date.accessioned2017-03-14T22:02:50Z
dc.date.available2017-03-14T22:02:50Z
dc.date.created2017-03-14T22:02:50Z
dc.date.issued2015-11
dc.identifierAimar, Hugo Alejandro; Carena, Marilina; Iaffei, Bibiana Raquel; Gradual doubling property of Hutchinson orbits; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 11-2015; 191-205
dc.identifier0011-4642
dc.identifierhttp://hdl.handle.net/11336/13882
dc.identifier1572-9141
dc.description.abstractThe classical self-similar fractals can be obtained as xed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, have both the doubling property. We prove that the elements of Hutchinson orbits satisfy the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.
dc.languageeng
dc.publisherSpringer Heidelberg
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10587-015-0168-3
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10587-015-0168-3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMetric Space
dc.subjectDoubling Measure
dc.subjectHausdorff-Kantorovich Metric
dc.subjectIterated Function System
dc.titleGradual doubling property of Hutchinson orbits
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución