dc.creatorGiovanini, Leonardo Luis
dc.date.accessioned2017-03-23T20:57:48Z
dc.date.available2017-03-23T20:57:48Z
dc.date.created2017-03-23T20:57:48Z
dc.date.issued2011-10
dc.identifierGiovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-1739
dc.identifier1751-8644
dc.identifierhttp://hdl.handle.net/11336/14240
dc.description.abstractThis study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.
dc.languageeng
dc.publisherInst Engineering Technology-iet
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org//10.1049/iet-cta.2010.0634
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPredictive Control
dc.subjectDecentralised Control
dc.subjectDistributed Control
dc.subjectGame Theory
dc.subjectHeat Exchangers
dc.subjectOptimisation
dc.titleGame approach to distributed model predictive control
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución