info:eu-repo/semantics/article
High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.)
Fecha
2014-04Registro en:
Vega Gálvez, Antonio; López, Jessica; Torres Osandón, Maria José; Galotto, Maria José; Puente Díaz, Luis; et al.; High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.); Elsevier Science; LWT - Food Science and Technology; 58; 2; 4-2014; 519-526
0023-6438
CONICET Digital
CONICET
Autor
Vega Gálvez, Antonio
López, Jessica
Torres Osandón, Maria José
Galotto, Maria José
Puente Díaz, Luis
Quispe Fuentes, Issis
Di Scala, Karina Cecilia
Resumen
The aim of this study was to evaluate the effects of high hydrostatic pressure (HHP) at 300, 400 and 500 MPa/1, 3 and 5 min on nutritional and antioxidant properties of Cape gooseberry pulp after immediate application and after 60 days of storage. Proximal analysis, color, phenolic acids content and antioxidant capacity were determined. When analyzing the immediate effect of different treatments, a clear influence of HHP was observed in all the components of the proximal analysis. Regarding color, none of the three chromatic parameters showed significant differences with control leading to a minimum ΔE at 300 MPa/3 min. Changes in bound and free phenolic acids were evidenced after treatments. The maximum levels of TPC as well as antioxidant capacity were observed at 500 MPa/5 min. By the end of storage, all treated samples discolored leading to ΔE = 14.9 at 500 MPa/5 min. The profile of free and bound phenolic acids presented differences compared to Day 0. The antioxidant capacity by means of ORAC increased for treatments above 300 MPa/5 min indicating the effectiveness of these treatments for the production of functional products based on gooseberry pulp. For treatments above 400 MPa/3 min, molds and yeasts were not detected.