dc.creatordel Pezzo, Leandro Martin
dc.date.accessioned2017-05-16T15:21:13Z
dc.date.available2017-05-16T15:21:13Z
dc.date.created2017-05-16T15:21:13Z
dc.date.issued2010-08
dc.identifierdel Pezzo, Leandro Martin; Optimization problem for extremals of the trace inequality in domains with holes; World Scientific; Communications In Contemporary Mathematics; 12; 4; 8-2010; 569-586
dc.identifier0219-1997
dc.identifierhttp://hdl.handle.net/11336/16533
dc.identifier1793-6683
dc.description.abstractWe study the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. We find a formula for the first variation of the Sobolev trace with respect to the hole. As a consequence of this formula, we prove that when Ω is a centered ball, the symmetric hole is critical when we consider deformation that preserve volume but is not optimal for some case.
dc.languageeng
dc.publisherWorld Scientific
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0219199710003920
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219199710003920
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0809.0246
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSobolev Trace Embedding
dc.subjectShape Derivative
dc.subjectSteklov Eigenvalues
dc.titleOptimization problem for extremals of the trace inequality in domains with holes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución