dc.creatorGudowska Nowak, Ewa
dc.creatorOchab, Jeremi K.
dc.creatorOles, Katarzyna
dc.creatorBeldzik, Ewa
dc.creatorChialvo, Dante Renato
dc.creatorDomagalik, Aleksandra
dc.creatorFafrowicz, Magdalena
dc.creatorMarek, Tadeusz
dc.creatorNowak, Maciej A.
dc.creatorOginska, Halszka
dc.creatorSzwed, Jerzy
dc.creatorTyburczyk, Jacek
dc.date.accessioned2018-07-25T14:09:00Z
dc.date.accessioned2018-11-06T11:20:01Z
dc.date.available2018-07-25T14:09:00Z
dc.date.available2018-11-06T11:20:01Z
dc.date.created2018-07-25T14:09:00Z
dc.date.issued2016-05
dc.identifierGudowska Nowak, Ewa; Ochab, Jeremi K.; Oles, Katarzyna; Beldzik, Ewa; Chialvo, Dante Renato; et al.; Seeking a fingerprint: analysis of point processes in actigraphy recording; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 5; 5-2016; 1-19
dc.identifier1742-5468
dc.identifierhttp://hdl.handle.net/11336/53060
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1848660
dc.description.abstractMotor activity of humans displays complex temporal fluctuations which can be characterised by scale-invariant statistics, thus demonstrating that structure and fluctuations of such kinetics remain similar over a broad range of time scales. Previous studies on humans regularly deprived of sleep or suffering from sleep disorders predicted a change in the invariant scale parameters with respect to those for healthy subjects. In this study we investigate the signal patterns from actigraphy recordings by means of characteristic measures of fractional point processes. We analyse spontaneous locomotor activity of healthy individuals recorded during a week of regular sleep and a week of chronic partial sleep deprivation. Behavioural symptoms of lack of sleep can be evaluated by analysing statistics of duration times during active and resting states, and alteration of behavioural organisation can be assessed by analysis of power laws detected in the event count distribution, distribution of waiting times between consecutive movements and detrended fluctuation analysis of recorded time series. We claim that among different measures characterising complexity of the actigraphy recordings and their variations implied by chronic sleep distress, the exponents characterising slopes of survival functions in resting states are the most effective biomarkers distinguishing between healthy and sleep-deprived groups.
dc.languageeng
dc.publisherIOP Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1742-5468/2016/05/054034
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2016/05/054034/meta
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFLUCTUATIONS (THEORY)
dc.subjectSELF-ORGANISED CRITICALITY (THEORY)
dc.subjectSIGNAL TRANSDUCTION (THEORY)
dc.subjectSTOCHASTIC PROCESSES (THEORY)
dc.titleSeeking a fingerprint: analysis of point processes in actigraphy recording
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución