dc.creatorDieulefait, Luis
dc.creatorGuerberoff, Lucio
dc.creatorPacetti, Ariel Martín
dc.date.accessioned2017-04-10T18:00:10Z
dc.date.accessioned2018-11-06T11:19:49Z
dc.date.available2017-04-10T18:00:10Z
dc.date.available2018-11-06T11:19:49Z
dc.date.created2017-04-10T18:00:10Z
dc.date.issued2010-04
dc.identifierDieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-1170
dc.identifier0025-5718
dc.identifierhttp://hdl.handle.net/11336/15075
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1848563
dc.description.abstractWe present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02291-1/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0025-5718-09-02291-1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectElliptic curves
dc.subjectModularity
dc.titleProving Modularity for a given elliptic curve over an imaginary quadratic field
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución