dc.creator | Dieulefait, Luis | |
dc.creator | Guerberoff, Lucio | |
dc.creator | Pacetti, Ariel Martín | |
dc.date.accessioned | 2017-04-10T18:00:10Z | |
dc.date.accessioned | 2018-11-06T11:19:49Z | |
dc.date.available | 2017-04-10T18:00:10Z | |
dc.date.available | 2018-11-06T11:19:49Z | |
dc.date.created | 2017-04-10T18:00:10Z | |
dc.date.issued | 2010-04 | |
dc.identifier | Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-1170 | |
dc.identifier | 0025-5718 | |
dc.identifier | http://hdl.handle.net/11336/15075 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1848563 | |
dc.description.abstract | We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. | |
dc.language | eng | |
dc.publisher | American Mathematical Society | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02291-1/ | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0025-5718-09-02291-1 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Elliptic curves | |
dc.subject | Modularity | |
dc.title | Proving Modularity for a given elliptic curve over an imaginary quadratic field | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |