dc.creatorAndruchow, Esteban
dc.creatorLarotonda, Gabriel Andrés
dc.date.accessioned2017-07-12T15:16:14Z
dc.date.accessioned2018-11-06T11:18:58Z
dc.date.available2017-07-12T15:16:14Z
dc.date.available2018-11-06T11:18:58Z
dc.date.created2017-07-12T15:16:14Z
dc.date.issued2011-09
dc.identifierAndruchow, Esteban; Larotonda, Gabriel Andrés; Smooth paths of conditional expectations; World Scientific; International Journal Of Mathematics; 22; 7; 9-2011; 1031-1050
dc.identifier0129-167X
dc.identifierhttp://hdl.handle.net/11336/20219
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1848319
dc.description.abstractLet A be a von Neumann algebra with a finite trace , represented in H = L2(A, ), and let Bt ⊂ A be sub- algebras, for t in an interval I (0 ∈ I). Let Et : A → Bt be the unique -preserving conditional expectation. We say that the path t 7→ Et is smooth if for every a ∈ A and ∈ H, the map I ∋ t 7→ Et(a) ∈ H is continuously differentiable. This condition implies the existence of the derivative operator dEt(a) : H → H, dEt(a) = d dt Et(a). If this operator satifies the additional boundedness condition, ZJ kdEt(a)k2 2dt ≤ CJ kak2 2, for any closed bounded sub-interval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras Bt are ∗-isomorphic. More precisely, there exists a curve Gt : A → A, t ∈ I of unital, ∗-preserving linear isomorphisms which intertwine the expectations, Gt ◦ E0 = Et ◦ Gt. The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps B0 onto Bt. We show that this restriction is a multiplicative isomorphism.
dc.languageeng
dc.publisherWorld Scientific
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X11007124
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0129167X11007124
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectconditional expectations
dc.subjectfinite von Neumann algebras
dc.subjectsystems of projections
dc.titleSmooth paths of conditional expectations
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución