info:eu-repo/semantics/article
Feature selection for face recognition based on multi-objective evolutionary wrappers
Registro en:
Vignolo, Leandro Daniel; Milone, Diego Humberto; Scharcanski, Jacob; Feature selection for face recognition based on multi-objective evolutionary wrappers; Elsevier; Expert Systems With Applications; 40; 13; 10-2013; 5077-5084
0957-4174
Autor
Vignolo, Leandro Daniel
Milone, Diego Humberto
Scharcanski, Jacob
Resumen
Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most discriminant features is not available. Moreover, in order to perform the classification task with reduced complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are excluded from the problem representation. This work presents a multi-objective wrapper, based on genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed strategy explores the space of multiple feasible selections in order to minimize the cardinality of the feature subset, and at the same time to maximize its discriminative capacity. Experimental results show that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve the classification performance, while reducing the representation dimensionality. Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Scharcanski, Jacob. Universidade Federal do Rio Grande do Sul. Instituto de Informatica and Dept. de Engenharia Eletrica; Brasil