Artículos de revistas
A molecular recombination map of Antirrhinum majus
Fecha
2010-12Registro en:
Schwarz Sommer, Zsuzsanna ; Gübitz, Thomas; Weiss, Julia ; Gómez di Marco, Perla; Delgado Benarroch, Luciana; et al.; A molecular recombination map of Antirrhinum majus; Biomed Central; Bmc Plant Biology; 10; 12-2010; 275-285
1471-2229
1471-2229
Autor
Schwarz Sommer, Zsuzsanna
Gübitz, Thomas
Weiss, Julia
Gómez di Marco, Perla
Delgado Benarroch, Luciana
Hudson, Andrew
Egea Cortines, Marcos
Resumen
Background
Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus.
Results
We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size.
Conclusions
The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.