dc.contributor | Guacaneme Suárez, Edgar Alberto | |
dc.creator | Castiblanco Peña, Yara Zuleny | |
dc.date.accessioned | 2016-06-09T20:00:16Z | |
dc.date.accessioned | 2017-12-12T21:21:41Z | |
dc.date.available | 2016-06-09T20:00:16Z | |
dc.date.available | 2017-12-12T21:21:41Z | |
dc.date.created | 2016-06-09T20:00:16Z | |
dc.date.created | 2017-12-12T21:21:41Z | |
dc.date.issued | 2014 | |
dc.identifier | TO-17476 | |
dc.identifier | http://hdl.handle.net/20.500.12209/126 | |
dc.identifier | instname:Universidad Pedagógica Nacional | |
dc.identifier | instname:Universidad Pedagógica Nacional | |
dc.identifier | reponame: Repositorio Institucional UPN | |
dc.identifier | repourl: http://repositorio.pedagogica.edu.co/ | |
dc.description.abstract | Este documento describe los aspectos metodológicos considerados para la elaboración de un inventario de documentos relacionadas con propuestas y experiencias en torno al uso de una perspectiva histórica en la Enseñanza y Aprendizaje de las ecuaciones, que será puesto al servicio de docentes de Matemáticas que tengan interés por profundizar en el estudio de las ecuaciones y/o mejorar su práctica profesional. Inicialmente se describe en qué consiste el inventario de fuentes bibliográficas de documentos que versan sobre ecuaciones, luego se describen los momentos y etapas del proceso de selección, y por último, se realiza un análisis y reflexión de los resultados obtenidos. | |
dc.language | spa | |
dc.publisher | Universidad Pedagógica Nacional | |
dc.publisher | Especialización en Educación Matemática | |
dc.publisher | Facultad de Ciencia y Tecnología | |
dc.relation | Baumgart, J. (1971). The History of Algebra.In Historical Topics for the
Mathematics Classroom (pp. 233–263). Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Baumgart, J. K. (1994). Tópicos de História da Matemática para uso em sala de
aula. Álgebra (H. H. Domingues, Trans. Vol. 4). Sao Paulo: Atual Editora
Ltda. | |
dc.relation | Berlinghoff, W. P., & Gouvêa, F. Q. (2004). Math through the Ages. A Gentle
History for Teacher and Others (Expanded Edition ed.). Washington &
Farmington: Oxton House Piblishers & The Mathematical Association of
America. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004).A Square and Things Quadratic Equations.
In Math through the Ages: A Gentle History for Teachers and Others
(Expanded E., pp. 127–132). Oxton House Publishers and The
Mathematical Association of America. doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). Algebra Comes of Age. In Math through
the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 37–
42). Oxton House Publishers and The Mathematical Association of
America. doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). Arabic Mathematics. In Math through the
Ages: A Gentle History for Teachers and Others (Expanded E., pp. 28–32).
Oxton House Publishers and The Mathematical Association of America.
doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). Intrigue in Rnaissance Italy Solving Cubic
Equations. In Math through the Ages: A Gentle History for Teachers and
Others (Expanded E., pp. 127–132). Oxton House Publishers and The
Mathematical Association of America. doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). Linear Thinking Solving First Degree
Equations.In Math through the Ages: A Gentle History for Teachers and
Others (Expanded E., pp. 121–126). Oxton House Publishers and The
Mathematical Association of America. doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). Something Less Than Nothing? Negative
Numbers. In Math through the Ages: A Gentle History for Teachers and
Others (Expanded E., pp. 93–100). Oxton House Publishers and The
Mathematical Association of America. doi:10.1086/428978. | |
dc.relation | Berlinghoff, W., & Gouvea, F. (2004). The cossic Art Writing Algebra with
Sybols. In Math through the Ages: A Gentle History for Teachers and
Others (Expanded E., pp. 113–120). Oxton House Publishers and The
Mathematical Association of America. doi:10.1086/428978. | |
dc.relation | Boyer, C. B. (1993). Tópicos de História da Matemática para uso em sala de aula.
Cálculo (H. H. Domingues, Trans. Vol. 6). Sao Paulo: Atual Editora Ltda. | |
dc.relation | Bradley, R. E. (2011). Cusps: Horns and Beaks. In D. Jardine & A. S. Gellasch
(Eds.), Mathematical Time Capsules: Historical Modules for the
Mathematics Classroom (pp. 89–99). Washington DC: The Mathematical
Association of America. | |
dc.relation | Bruckheimer, M., & Arcavi, A. (2000). Mathematics and Its History: An
Educational Partnership. In V. Katz (Ed.), Using History to Teach
Mathematics: An international Perspective (pp. 135–140). Washington
DC: The Mathematical Association of America. | |
dc.relation | Calinger, R. (Ed.). (1996). Vita mathematica. Historical research and integration
with teaching. [Washington, D.C.]: Mathematical Association of America. | |
dc.relation | Cooke, R. (2011). Numerical solution of equations. In D. Jardine & A. S. Gellasch
(Eds.), Mathematical Time Capsules: Historical Modules for the
Mathematics Classroom (pp. 17–21). Washington DC: The Mathematical
Association of America. | |
dc.relation | Cooke, R. (2011). The Sources of Algebra. In D. Jardine & A. S. Gellasch (Eds.),
Mathematical Time Capsules: Historical Modules for the Mathematics
Classroom (pp. 1–6). Washington DC: The Mathematical Association of
America. | |
dc.relation | Curtin, D. J. (2011).Complex Numbers, Cubic Equations, and Sixteenth-Century
Italy. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules:
Historical Modules for the Mathematics Classroom (pp. 39–43).
Washington DC: The Mathematical Association of America. | |
dc.relation | Dorier, J.-L.(2000). Use of History in a Research Work on the Teaching of Linear
Algebra. In V. Katz (Ed.), Using History to Teach Mathematics: An
international Perspective (pp. 99–110). Washington DC: The
Mathematical Association of America. | |
dc.relation | Dorothy Wolfe. (1971). Discriminant. In Historical Topics for the Mathematics
Classroom (pp. 323–324).Washington DC: National Council of Teachers
of Mathematics. | |
dc.relation | Ellis, W. (1971).The binomial Theorem.In Historical Topics for the Mathematics
Classroom (pp. 264–266).Washington DC: National Council of Teachers
of Mathematics.Ellis, W. (1971).The binomial Theorem.In Historical Topics for the Mathematics
Classroom (pp. 264–266).Washington DC: National Council of Teachers
of Mathematics. | |
dc.relation | Eves, H. (1994). Tópicos de História da Matemática para uso em sala de aula.
Geometría (H. H. Domingues, Trans. Vol. 3). Sao Paulo: Atual Editora
Ltda. | |
dc.relation | Fauvel, J., &Maanen, J. (1997). The Role of the History of Mathematics in the
Teaching and Learning of Mathematics: Discussion Document for an ICMI | |
dc.relation | Fauvel, J., & van Maanen, J. (2000). History in Mathematics Education. The ICMI
Study. Dordrecht/Boston/London: Kluwer Academic Publisher. | |
dc.relation | Fauvel, J., Cousquer, É., Furinghetti, F., Heiede, T., Lit, C., Smid, H., Tzanakis, C.
(2000). Bibliography for further work in the area In J. Fauvel & J. van
Maanen (Eds.), History in mathematics education. The ICMI Study (pp.
371-418). Dordrecht: Kluwer Academic Publishers. | |
dc.relation | Fletcher, S. (2002). An idea for teaching equations. Mathematics in School, 31(1),
28–29. | |
dc.relation | François, K., & Van Bendegem, J. P. (Eds.). (2007). Philosophical Dimensions in
Mathematics Education (Vol. 42): Springer. | |
dc.relation | Führer, L. (1991). Historical Stories in the Mathematics Classroom. For the
Learning of Mathematics, 11(2), 24–31.Retrieved from
http://www.jstor.org/stable/40248014. | |
dc.relation | Fuller, L. (1971). Determinants and Matrices. In Historical Topics for the
Mathematics Classroom (pp. 281–284).Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Fundamental Theorem of Algebra. (1971). In Historical Topics for the
Mathematics Classroom (pp. 316–318). Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Furinghetti, F. (2007).Teacher education through the history of mathematics.
Educational Studies in Mathematics, 66, 131–146. doi:10.1007/s10649-
006-9070-0. | |
dc.relation | Guacaneme, E. A. (2008). Una aproximación a la relación Historia de las
Matemáticas -Conocimiento del profesor de matemáticas. Paper presented
at the Tercer Encuentro de Programas de Formación Inicial de Profesores
de Matemáticas | |
dc.relation | Guacaneme, E. A. (2011). La Historia de las Matemáticas en la educación de un
profesor: razones e intenciones. Ponencia presentada en la Décimo tercera
Conferencia Iberoamericana de Educación Matemática (XIII CIAEMIACME), Recife, Brasil. | |
dc.relation | Gundlach, B. H. (1994). Tópicos de História da Matemática para uso em sala de
aula. Números e numerais (H. H. Domingues, Trans. Vol. 1). Sao Paulo:
Atual Editora Ltda. | |
dc.relation | Heeffer, A. (2007). Learning Concepts through the History of Mathematics: The
case of Simbolic Algebra. In K. Francois & J. P. Van Bendegem (Eds.),
Philosophical Dimensions in Mathematics Education (V 42.). New York:
Mathematics Education Library. | |
dc.relation | Heiede, T. (2002). Denmark: A very short in-service course in the history of
mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics
Education: The ICMI Study (6th ed., pp. 131–134). New York: Kluwer
Academic Publishers | |
dc.relation | Helfgott, M. (2004).Two examples from the natural sciences and their relationship
to the history and pedagogy of mathematics. Mediterranean Journal for
Research in Mathematic., 3(1-2), 147–166. | |
dc.relation | Hitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical
Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica.
Historical Research and integration with teaching (pp. 36–40).Washington
DC: The Mathematical Association of America. | |
dc.relation | Hitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical
Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica.
Historical Research and integration with teaching (pp. 36–40).Washington
DC: The Mathematical Association of America. | |
dc.relation | Hood, R. (1971). Solution of Polynomial Equations of Third and Higher
Degrees.In Historical Topics for the Mathematics Classroom (pp. 276–
279).Washington DC: National Council of Teachers of Mathematics. | |
dc.relation | Horiuchi, A. (2014). Higher Mathematics. In A. Karp & G. Schubling (Eds.),
Handbook on the History of Mathematics Education (pp. 170–171). New
York: Springer. | |
dc.relation | Horiuchi, A. (2014). Notes for a History of the Teaching of Algebra. In A. Karp &
G. Schubling (Eds.), Handbook on the History of Mathematics Education
(pp. 459–472). New York: Springer. | |
dc.relation | Hughes, B. (1995). The Earliest Correct Algebraic Solutions of Cubic Equations.
In R. Calinger (Ed.), Vita Mathematica. Historical Research and
integration with teaching (pp. 107–112).Washington DC: The
Mathematical Association of America. | |
dc.relation | ICONTEC. 2008. Norma Técnica Colombiana NTC 1486. Documentación.
Presentación de Tesis, Trabajos de grado y otros trabajos de investigación. | |
dc.relation | Jardine, D., & Shell-Gellasch, A. (Eds.). (2011). Mathematical Time Capsules.
Historical Modules for the Mathematics Classroom: The Mathematical
Association of America. | |
dc.relation | Jardine, D. (2011). Completing the Square trough the Milennia. In D. Jardine & A.
S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for
the Mathematics Classroom (pp. 23–28). Washington DC: The
Mathematical Association of America. | |
dc.relation | Joseph, G. G. (1997). What Is a Square Root? A Study of Geometrical
Representation in Different Mathematical Traditions. Mathematics in
School, 26(3), 4–9. Retrieved from http://www.jstor.org/stable/30215281
Karp, A., & Schubring, G. (Eds.). (2014). Handbook on the History of
Mathematics Education New York: Springer | |
dc.relation | Katz, V. (2007).Stages in the History of Algebra with Implications for Teaching.
Educational Studies in Mathematics, 66, 185–201. doi:10.1007/s10649-
006-9023-7. | |
dc.relation | Katz, V. J. (Ed.). (2000b). Using History to Teach Mathematics: An International
Perspective: The Mathematical Association of America. | |
dc.relation | Katz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical
analysis in predicting and interpreting students’ difficulties in mathematics.
In F. John & M. Jan Van (Eds.), History in Mathematics Education: The
ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic
Publishers. | |
dc.relation | Katz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical
analysis in predicting and interpreting students’ difficulties in mathematics.
In F. John & M. Jan Van (Eds.), History in Mathematics Education: The
ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic
Publishers. | |
dc.relation | Lumpkin, B. (1995). From Egypt to Benjamin Banneker: African origins of false
position solutions. In R. Calinger (Ed.), Vita Mathematica. Historical
Research and integration with teaching (pp. 279–288).Washington DC:
The Mathematical Association of America. | |
dc.relation | Man-Keung, S. (2000).An Excursion in Ancient Chinese Mathematics. In V. Katz
(Ed.), Using History to Teach Mathematics: An international Perspective
(pp. 159–166). Washington DC: The Mathematical Association of
America. | |
dc.relation | Montelle, C. (2011). Roots, Rocks, and Newton-Raphson Algorithms for
approximating p2 3000 Years Apart. In D. Jardine & A. S. Gellasch (Eds.),
Mathematical Time Capsules: Historical Modules for the Mathematics
Classroom (pp. 229–240). Washington DC: The Mathematical Association
of America. | |
dc.relation | Mosvold, R., Jakobsen, A., & Jankvist, U. T. (2014). How Mathematical
Knowledge for Teaching May Profit from the Study of History of
Mathematics. Science & Education, 23(1), 47–60. doi:10.1007/s11191-
013-9612-7. | |
dc.relation | NCTM. (1969). Historical Topics for the Mathematics Classroom. Thirty-first
Yearbook. Washington, D.C.: National Council of Teacher of Mathematics. | |
dc.relation | Ofir, R., &Arcavi, A. (1992). Word Problems and Equations: An Historical
Activity for the Algebra Classroom. The Mathematical Gazette, 76(475),
69–84. Retrieved from http://links.jstor.org/sici?sici=0025-
5572(199203)2:76:475<69:WPAEAH>2.0.CO;2-4. | |
dc.relation | Panagiotou, E. N. (2014). A Voyage of Mathematical and Cultural Awareness for
Students of Upper Secondary School. Science& Education, 23(1), 79–123.
doi:10.1007/s11191-013-9653-y. | |
dc.relation | Park, R. (1971). Horner’s Method. In Historical Topics for the Mathematics
Classroom (pp. 274–275).Washington DC: National Council of Teachers
of Mathematics. | |
dc.relation | Perlis, S. (1971). Congruence (Mod m). In Historical Topics for the Mathematics
Classroom (pp. 288–290).Washington DC: National Council of Teachers
of Mathematics. | |
dc.relation | Pratt, G. (1971). Early Greek Algebra. In Historical Topics for the Mathematics
Classroom (pp. 291–301).Washington DC: National Council of Teachers
of Mathematics. | |
dc.relation | Radford, L. (1996). An Historical Incursion into the Hidden side of the Early
Development of Equations. BSHM. | |
dc.relation | Radford, L., & Georges Guérette. (2000). Second Degree Equations in the
Classroom: A Babylonian Approach. In V. Katz (Ed.), Using History to
Teach Mathematics: An international Perspective (pp. 69–75). Washington
DC: The Mathematical Association of America | |
dc.relation | Radford, L., & Puig, L. (2007). Syntax and Meaning as Sensous, Visual, Historical
forms of Algebraic Thinking. Educational Studies in Mathematics, 66(2),
145–164. doi:10.1007/s10649-006-9024-6. | |
dc.relation | Read, C. (1971). Arabic Algebra, 820-1250.In Historical Topics for the
Mathematics Classroom (pp. 305–309).Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Schwartz, R. K. (2011). Adapting the Medieval “Rule of Double False Position” to
the Modern Classroom. In D. Jardine & A. S. Gellasch (Eds.),
Mathematical Time Capsules: Historical Modules for the Mathematics
Classroom (pp. 29–37). Washington DC: The Mathematical Association of
America. | |
dc.relation | Sena (s.f). ¿Qué tipos de lectura hay?. Recuperado de
http://biblioteca.sena.edu.co/paginas/cap4e4.html. | |
dc.relation | Sriraman, B. (Ed.). (2012). Crossroads in the History of Mathematics and
Mathematics Education (Vol. Monograph 12): IAP/Information Age Pub. | |
dc.relation | Sloyen, S. (1971). Algebra in Europa, 1200-1850. In Historical Topics for the
Mathematics Classroom (pp. 309–311). Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Swetz, F. (1995).Enigmas of Chinese Mathematics. In R. Calinger (Ed.), Vita
Mathematica. Historical Research and integration with teaching (pp. 92–
97).Washington DC: The Mathematical Association of America. | |
dc.relation | Swetz, F. J., Fauvel, J., Bekken, O., Johansson, B., & Katz, V. J. (Eds.). (1995).
Learn from the Masters! Washington, D.C.: The Mathematical Association
of America. | |
dc.relation | UPN, D. (2011). Criterios para la realización y evaluación de trabajo de grado. Bogotá. | |
dc.relation | Waldeck, E., & Mainville, J. (1971). Rule of False Position. In Historical Topics
for the Mathematics Classroom (p. 332).Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Western, D. (1971). Descartes’s Rule of Signs. In Historical Topics for the
Mathematics Classroom (pp. 318–320).Washington DC: National Council
of Teachers of Mathematics. | |
dc.relation | Winicki, G. (2000). The Analysis of Regula Falsi as an Instance for Professional
Development of Elementary School Teachers. In V. Katz (Ed.), Using
History to Teach Mathematics: An international Perspective (pp. 129–133).
Washington DC: The Mathematical Association of America. | |
dc.relation | Wrestler, F. (1971).Hindu Algebra. In Historical Topics for the Mathematics
Classroom(pp. 301–305).Washington DC: National Council of Teachers of
Mathematics. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.source | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | |
dc.source | instname:Universidad Pedagógica Nacional | |
dc.subject | Matemáticas - Enseñanza | |
dc.subject | Ecuaciones | |
dc.subject | Formación profesional de maestros | |
dc.subject | Educación matemática - Historia | |
dc.title | Ecuaciones desde una perspectiva histórica : un inventario de fuentes bibliográficas para ser empleado por profesores de matemáticas. | |
dc.type | info:eu-repo/semantics/bachelorThesis | |