dc.creatorRiva, Mateus
dc.creatorPonti, Moacir Antonelli
dc.creatorCampos, Teofilo de
dc.date.accessioned2016-10-20T19:46:38Z
dc.date.accessioned2018-07-04T17:12:04Z
dc.date.available2016-10-20T19:46:38Z
dc.date.available2018-07-04T17:12:04Z
dc.date.created2016-10-20T19:46:38Z
dc.date.issued2016-08
dc.identifierEuropean Conference on Artificial Intelligence, XXII, 2016, Hague.
dc.identifier9781614996712
dc.identifierhttp://www.producao.usp.br/handle/BDPI/51068
dc.identifierhttp://dx.doi.org/10.3233/978-1-61499-672-9-216
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1646032
dc.description.abstractIncremental learning capabilities of classifiers is a relevant topic, specially when dealing with scenarios such as data stream mining, concept drift and active learning. We investigate the capabilities of an incremental version of the Optimum-Path Forest classifier (OPF-CI) in the context of learning new classes and compare its behavior against Support Vector Machines and k Nearest Neighbours classifiers. The OPF-CI classifier is a parameter-free, graphbased approach to incremental training that runs in linear time with respect to the number of instances. Our results show OPF-CI keeps the running time low while producing an accuracy behavior similar to the other classifiers for increments of instances. Also, it is robust to variations on the order of the learned classes, demonstrating the applicability of the method.
dc.languageeng
dc.publisherEuropean Association for Artificial Intelligence - EurAI
dc.publisherBenelux Association for Artificial Intelligence - BNVKI
dc.publisherHague
dc.relationEuropean Conference on Artificial Intelligence, XXII
dc.rightsCopyright The Authors and IOS Press
dc.rightsopenAccess
dc.titleOne-class to multi-class model update using the class-incremental optimum-path forest classifier
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución