dc.creatorMiagava, Joice
dc.creatorSilva, André L.
dc.creatorNavrotsky, Alexandra
dc.creatorCastro, Ricardo Hauch Ribeiro
dc.creatorGouvea, Douglas
dc.date.accessioned2016-04-01T12:56:24Z
dc.date.accessioned2018-07-04T17:10:38Z
dc.date.available2016-04-01T12:56:24Z
dc.date.available2018-07-04T17:10:38Z
dc.date.created2016-04-01T12:56:24Z
dc.date.issued2016
dc.identifierJournal of the American Ceramic Society, Easton, v.99, p.638-644, 2016"
dc.identifier0002-7820
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50017
dc.identifier10.1111/jace.13954
dc.identifierhttp://onlinelibrary.wiley.com/doi/10.1111/jace.13954/epdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645694
dc.description.abstractThe thermodynamic stability of nanocrystalline SnO2–TiO2 solid solutions was studied experimentally. Microcalorimetry of water adsorption revealed a systematic decrease in the surface energy with increasing Ti4+ content in the SnO2-rich compositions, consistent with previous reports of Ti4+ segregation on the surface. The surface energy change was accompanied by an increase in the magnitude of the heat of water adsorption, also indicating a modification of the SnO2 surface by Ti4+. Supporting the water adsorption data, calculations using high-temperature oxide melt solution calorimetry data also suggest a decrease in the interface energies. A thermodynamic analysis showed that the observed surface energy decrease is responsible for an increase in the stability of solid solutions in the nanophase regime. Although a miscibility gap is expected in this system from bulk phase diagrams, the surface energy contribution modifies the bulk trend and promotes extensive solid solutions when the surface area is above a critical value dependent on the surface energy and the bulk enthalpy of mixing.
dc.languageeng
dc.publisherEaston
dc.relationJournal of the American Ceramic Society
dc.rightsAmerican Ceramic Society
dc.rightsopenAccess
dc.subjectNanocrystalline
dc.subjectSurface energies
dc.subjectThermodynamic
dc.titleThe Nanocrystalline SnO2–TiO2 System‒Part II: Surface Energies and Thermodynamic Stability
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución