dc.creator | Llibre, Jaume | |
dc.creator | Oliveira, Regilene Delazari dos Santos | |
dc.creator | Valls, Claudia | |
dc.date.accessioned | 2016-10-18T21:43:23Z | |
dc.date.accessioned | 2018-07-04T17:10:30Z | |
dc.date.available | 2016-10-18T21:43:23Z | |
dc.date.available | 2018-07-04T17:10:30Z | |
dc.date.created | 2016-10-18T21:43:23Z | |
dc.date.issued | 2015-04 | |
dc.identifier | Nonlinear Dynamics, Dordrecht, v. 80, n. 1-2, p. 353-361, Apr. 2015 | |
dc.identifier | 0924-090X | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/50988 | |
dc.identifier | 10.1007/s11071-014-1873-4 | |
dc.identifier | http://dx.doi.org/10.1007/s11071-014-1873-4 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1645662 | |
dc.description.abstract | The first objective of this paper was to study the Darboux integrability of the polynomial differential system
'X PONTO' = y, 'Y PONTO' = z, 'Z PONTO' = −y − 'X POT.2' − xz + 3'Y POT.2' + a,
and the second one is to show that for a > 0 sufficiently small this model exhibits two small amplitude periodic solutions that bifurcate from a zero-Hopf equilibrium point localized at the origin of coordinates when a = 0. We note that this polynomial differential system introduced by Chen and Wang (Nonlinear Dyn 71:429–436, 2013) is relevant in the sense that it is the first system in 'R POT.3' exhibiting chaotic motion without having equilibria. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.publisher | Dordrecht | |
dc.relation | Nonlinear Dynamics | |
dc.rights | Copyright Springer Science+Business Media | |
dc.rights | closedAccess | |
dc.subject | Darboux integrability | |
dc.subject | Zero-Hopf bifurcation | |
dc.subject | Averaging theory | |
dc.title | On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system | |
dc.type | Artículos de revistas | |