dc.creatorLlibre, Jaume
dc.creatorOliveira, Regilene Delazari dos Santos
dc.creatorValls, Claudia
dc.date.accessioned2016-10-18T21:43:23Z
dc.date.accessioned2018-07-04T17:10:30Z
dc.date.available2016-10-18T21:43:23Z
dc.date.available2018-07-04T17:10:30Z
dc.date.created2016-10-18T21:43:23Z
dc.date.issued2015-04
dc.identifierNonlinear Dynamics, Dordrecht, v. 80, n. 1-2, p. 353-361, Apr. 2015
dc.identifier0924-090X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50988
dc.identifier10.1007/s11071-014-1873-4
dc.identifierhttp://dx.doi.org/10.1007/s11071-014-1873-4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645662
dc.description.abstractThe first objective of this paper was to study the Darboux integrability of the polynomial differential system 'X PONTO' = y, 'Y PONTO' = z, 'Z PONTO' = −y − 'X POT.2' − xz + 3'Y POT.2' + a, and the second one is to show that for a > 0 sufficiently small this model exhibits two small amplitude periodic solutions that bifurcate from a zero-Hopf equilibrium point localized at the origin of coordinates when a = 0. We note that this polynomial differential system introduced by Chen and Wang (Nonlinear Dyn 71:429–436, 2013) is relevant in the sense that it is the first system in 'R POT.3' exhibiting chaotic motion without having equilibria.
dc.languageeng
dc.publisherSpringer
dc.publisherDordrecht
dc.relationNonlinear Dynamics
dc.rightsCopyright Springer Science+Business Media
dc.rightsclosedAccess
dc.subjectDarboux integrability
dc.subjectZero-Hopf bifurcation
dc.subjectAveraging theory
dc.titleOn the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución