dc.creatorGarcia, Luís P. F.
dc.creatorSáez, José A.
dc.creatorLuengo, Julián
dc.creatorLorena, Ana C.
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.creatorHerrera, Francisco
dc.date.accessioned2016-09-16T14:49:03Z
dc.date.accessioned2018-07-04T17:10:27Z
dc.date.available2016-09-16T14:49:03Z
dc.date.available2018-07-04T17:10:27Z
dc.date.created2016-09-16T14:49:03Z
dc.date.issued2015-12
dc.identifierKnowledge-Based Systems, Amsterdam, v. 90, p. 153-164, Dec. 2015
dc.identifier0950-7051
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50727
dc.identifier10.1016/j.knosys.2015.09.023
dc.identifierhttp://dx.doi.org/10.1016/j.knosys.2015.09.023
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645649
dc.description.abstractNoise filters are preprocessing techniques designed to improve data quality in classification tasks by detecting and eliminating examples that contain errors or noise. However, filtering can also remove correct examples and examples containing valuable information, which could be useful for learning. This fact usually implies a margin of improvement on the noise detection accuracy for almost any noise filter. This paper proposes a scheme to improve the performance of noise filters in multi-class classification problems, based on decomposing the dataset into multiple binary subproblems. Decomposition strategies have proven to be successful in improving classification performance in multi-class problems by generating simpler binary subproblems. Similarly, we adapt the principles of the One-vs-One decomposition strategy to noise filtering, making the noise identification process simpler. In order to integrate the filtering results achieved in the binary subproblems, our proposal uses a soft voting approach considering a reliability level based on the aggregation of the noise degree prediction calculated for each binary classifier. The experimental results show that the One-vs-One decomposition strategy usually increases the performance of the noise filters studied, which can detect more accurately the noisy examples.
dc.languageeng
dc.publisherElsevier
dc.publisherAmsterdam
dc.relationKnowledge-Based Systems
dc.rightsCopyright Elsevier B.V.
dc.rightsclosedAccess
dc.subjectNoisy data
dc.subjectClass noise
dc.subjectNoise filters
dc.subjectDecomposition strategies
dc.subjectClassification
dc.titleUsing the one-vs-one decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución