dc.creatorBraga, Igor
dc.creatorMonard, Maria Carolina
dc.date.accessioned2016-09-23T19:12:18Z
dc.date.accessioned2018-07-04T17:10:16Z
dc.date.available2016-09-23T19:12:18Z
dc.date.available2018-07-04T17:10:16Z
dc.date.created2016-09-23T19:12:18Z
dc.date.issued2015-09
dc.identifierNeurocomputing, Amsterdam, v. 163, p. 106-114, Sep. 2015
dc.identifier0925-2312
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50885
dc.identifier10.1016/j.neucom.2014.12.097
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2014.12.097
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645611
dc.description.abstractThe kernel regularized least squares (KRLS) method uses the kernel trick to perform non-linear regression estimation. Its performance depends on proper selection of both a kernel function and a regularization parameter. In practice, cross-validation along with the Gaussian RBF kernel have been widely used for carrying out model selection for KRLS. However, when training data is scarce, this combination often leads to poor regression estimation. In order to mitigate this issue, we follow two lines of investigation in this paper. First, we explore a new type of kernel function that is less susceptible to overfitting than the RBF kernel. Then, we consider alternative parameter selection methods that have been shown to perform well for other regression methods. Experiments conducted on real-world datasets show that an additive spline kernel greatly out performs both the RBF and a previously proposed multiplicative spline kernel. We also find that the parameter selection procedure Finite Prediction Error (FPE) is a competitive alternative to cross-validation when using the additive splines kernel.
dc.languageeng
dc.publisherElsevier
dc.publisherAmsterdam
dc.relationNeurocomputing
dc.rightsCopyright Elsevier B.V.
dc.rightsclosedAccess
dc.subjectNon-linear regression
dc.subjectkernel regularized least squares
dc.subjectCross-validation
dc.subjectRBF kernel
dc.subjectSpline kernel
dc.subjectParameter selection
dc.titleImproving the kernel regularized least squares method for small-sample regression
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución