dc.creatorBonheure, Denis
dc.creatorSantos, Ederson Moreira dos
dc.creatorRamos, Miguel
dc.creatorTavares, Hugo
dc.date.accessioned2016-09-16T18:48:45Z
dc.date.accessioned2018-07-04T17:10:14Z
dc.date.available2016-09-16T18:48:45Z
dc.date.available2018-07-04T17:10:14Z
dc.date.created2016-09-16T18:48:45Z
dc.date.issued2015-12
dc.identifierJournal de Mathématiques Pures et Appliquées, Paris, v. 104, n. 6, p. 1075-1107, Dec. 2015
dc.identifier0021-7824
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50735
dc.identifier10.1016/j.matpur.2015.07.005
dc.identifierhttp://dx.doi.org/10.1016/j.matpur.2015.07.005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645606
dc.description.abstractIn this paper we prove existence of least energy nodal solutions for the Hamiltonian elliptic system with Hénon-type weights −Δu = '|X| POT. β' '|V| POT. Q-1' v, −Δv = '|X|POT. α' '|U| POT. P−1' u in Ω, u= v = 0 on ∂Ω, where Ω is a bounded smooth domain in 'R POT.N', N≥1, α, β≥0 and the nonlinearities are superlinear and subcritical, namely 1 > 1/p + 1 + 1/q + 1 > N − 2/N. When Ω is either a ball or an annulus centred at the origin and N≥2, we show that these solutions display the so-called foliated Schwarz symmetry. It is natural to conjecture that these solutions are not radially symmetric. We provide such a symmetry breaking in a range of parameters where the solutions of the system behave like the solutions of a single equation. Our results on the above system are new even in the case of the Lane–Emden system (i.e. without weights). As far as we know, this is the first paper that contains results about least energy nodal solutions for strongly coupled elliptic systems and their symmetry properties.
dc.languageeng
dc.publisherGauthier-Villars/Elsevier
dc.publisherParis
dc.relationJournal de Mathématiques Pures et Appliquées
dc.rightsCopyright Elsevier Masson SAS.
dc.rightsclosedAccess
dc.subjectHamiltonian elliptic systems
dc.subjectHénon weights
dc.subjectLeast energy nodal solutions
dc.subjectFoliated Schwarz symmetry
dc.subjectSymmetry-breaking
dc.titleExistence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución