dc.creatorNeto, Francisco Louzada
dc.creatorCancho, Vicente Garibay
dc.creatorYiqi, Bao
dc.date.accessioned2016-09-30T14:36:13Z
dc.date.accessioned2018-07-04T17:09:50Z
dc.date.available2016-09-30T14:36:13Z
dc.date.available2018-07-04T17:09:50Z
dc.date.created2016-09-30T14:36:13Z
dc.date.issued2015-08
dc.identifierStatistics,Philadelphia : Taylor and Francis,v.49, n.4, 930-949, Ago. 2015
dc.identifier0233-1888
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50926
dc.identifier10.1080/02331888.2014.925900
dc.identifierhttp://dx.doi.org/10.1080/02331888.2014.925900
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645514
dc.description.abstractThe purpose of this paper is to develop a Bayesian approach for the log-Weibull-negative-binomial regression model under latent failure causes and presence of a randomized activation mechanism. We assume the number of competing causes of the event of interest follows a negative binomial distribution while the latent lifetimes are assumed to follows a Weibull distribution. Markov chain Monte Carlo methods are used to develop a Bayesian approach. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated on artificial and real data sets.
dc.languageeng
dc.publisherTaylor and Francis
dc.publisherPhiladelphia
dc.relationStatistics
dc.rightsCopyright Taylor & Francis
dc.rightsrestrictedAccess
dc.subjectcase deletion influence diagnostics
dc.subjectlatent failure causes
dc.subjectnegative-binomial distribution
dc.subjectsurvival analysis
dc.subjectWeibull distribution
dc.titleThe log-Weibull-negative-binomial regression model under latent failure causes and presence of randomized activation schemes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución