dc.creator | Alves, Claudianor O. | |
dc.creator | Nemer, Rodrigo C. M. | |
dc.creator | Soares, Sérgio Henrique Monari | |
dc.date.accessioned | 2016-09-14T18:48:59Z | |
dc.date.accessioned | 2018-07-04T17:09:48Z | |
dc.date.available | 2016-09-14T18:48:59Z | |
dc.date.available | 2018-07-04T17:09:48Z | |
dc.date.created | 2016-09-14T18:48:59Z | |
dc.date.issued | 2015 | |
dc.identifier | Topological Methods in Nonlinear Analysis, Torun, v. 46, n. 1, p. 329-362, 2015 | |
dc.identifier | 1230-3429 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/50689 | |
dc.identifier | 10.12775/TMNA.2015.050 | |
dc.identifier | http://projecteuclid.org/euclid.tmna/1459343898 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1645506 | |
dc.description.abstract | We study the existence of solutions for a class of nonlinear Schrödinger equations involving a magnetic field with mixed Dirichlet-Neumann boundary conditions. We use Lusternik-Shnirelman category and the Morse theory to estimate the number of nontrivial solutions in terms of the topology of the part of the boundary where the Neumann condition is prescribed. | |
dc.language | eng | |
dc.publisher | Juliusz Schauder Centre for Nonlinear Studies | |
dc.publisher | Torun | |
dc.relation | Topological methods in nonlinear analysis | |
dc.rights | Copyright Juliusz Schauder Centre for Nonlinear Studies | |
dc.rights | closedAccess | |
dc.subject | Nonlinear Schrödinger equation | |
dc.subject | variational methods | |
dc.subject | Lusternik-Schnirelman category | |
dc.subject | Morse theory | |
dc.title | Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field | |
dc.type | Artículos de revistas | |