dc.creatorJaskowiak, Pablo Andretta
dc.creatorCampello, Ricardo José Gabrielli Barreto
dc.date.accessioned2016-03-17T19:23:32Z
dc.date.accessioned2018-07-04T17:09:45Z
dc.date.available2016-03-17T19:23:32Z
dc.date.available2018-07-04T17:09:45Z
dc.date.created2016-03-17T19:23:32Z
dc.date.issued2015-11
dc.identifierBrazilian Conference on Intelligent Systems, IV, 2015, Natal.
dc.identifier9781509000166
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49972
dc.identifierhttp://dx.doi.org/10.1109/BRACIS.2015.14
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645493
dc.description.abstractData collection and storage capacities have increased significantly in the past decades. In order to cope with the increasingly complexity of data, feature selection methods have become an omnipresent preprocessing step in data analysis. In this paper we present a hybrid (filter — wrapper) feature selection method tailored for data classification problems. Our hybrid approach is composed of two stages. In the first stage, a filter clusters features to identify and remove redundancy. In the second stage, a wrapper evaluates different feature subsets produced by the filter, determining the one that produces the best classification performance in terms of accuracy. The effectiveness of our method is demonstrated through an empirical evaluation performed on real-world datasets coming from various sources.
dc.languageeng
dc.publisherUniversidade Federal do Rio Grande do Norte – UFRN
dc.publisherSociedade Brasileira de Computação – SBC
dc.publisherNatal
dc.relationBrazilian Conference on Intelligent Systems, IV
dc.rightsCopyright IEEE
dc.rightsclosedAccess
dc.subjectFeature Selection
dc.subjectFilter-Wrapper
dc.subjectHybrid Feature Selection
dc.subjectClassification
dc.subjectFeature Clustering
dc.titleA cluster based hybrid feature selection approach
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución