dc.creatorPereira, Rodrigo Gonçalves
dc.creatorPasquier, V.
dc.creatorSirker, J.
dc.creatorAffleck, I.
dc.date.accessioned2016-09-21T19:04:17Z
dc.date.accessioned2018-07-04T17:09:08Z
dc.date.available2016-09-21T19:04:17Z
dc.date.available2018-07-04T17:09:08Z
dc.date.created2016-09-21T19:04:17Z
dc.date.issued2014-09
dc.identifierJournal of Statistical Mechanics, Bristol : Institute of Physics - IOP, v. 2014, n. 9, p. P09037-1-P09037-25, Sept. 2014
dc.identifier1742-5468
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50843
dc.identifier10.1088/1742-5468/2014/09/P09037
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645353
dc.description.abstractWe extend T Prosen’s construction of quasilocal conserved quantities for the XXZ model (2011 Phys. Rev. Lett. 106 217206) to the case of periodic boundary conditions. These quasilocal operators stem from a two-parameter transfer matrix which employs a highest-weight representation of the quantum group algebra inherent in the Yang-Baxter algebra. In contrast with the open chain, where the conservation law is weakly violated by boundary terms, the quasilocal operators in the periodic chain exactly commute with the Hamiltonian and other local conserved quantities.
dc.languageeng
dc.publisherInstitute of Physics - IOP
dc.publisherBristol
dc.relationJournal of Statistical Mechanics: Theory and Experiment
dc.rightsCopyright IOP Publishing Ltd and SISSA Medialab srl
dc.rightsrestrictedAccess
dc.subjectAlgebraic structures of integrable models
dc.subjectIntegrable spin chains (vertex models)
dc.subjectQuantum integrability (Bethe ansatz)
dc.subjectQuantum transport in one-dimension
dc.titleExactly conserved quasilocal operators for the XXZ spin chain
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución