dc.creator | Pereira, Rodrigo Gonçalves | |
dc.creator | Pasquier, V. | |
dc.creator | Sirker, J. | |
dc.creator | Affleck, I. | |
dc.date.accessioned | 2016-09-21T19:04:17Z | |
dc.date.accessioned | 2018-07-04T17:09:08Z | |
dc.date.available | 2016-09-21T19:04:17Z | |
dc.date.available | 2018-07-04T17:09:08Z | |
dc.date.created | 2016-09-21T19:04:17Z | |
dc.date.issued | 2014-09 | |
dc.identifier | Journal of Statistical Mechanics, Bristol : Institute of Physics - IOP, v. 2014, n. 9, p. P09037-1-P09037-25, Sept. 2014 | |
dc.identifier | 1742-5468 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/50843 | |
dc.identifier | 10.1088/1742-5468/2014/09/P09037 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1645353 | |
dc.description.abstract | We extend T Prosen’s construction of quasilocal conserved quantities for the XXZ model (2011 Phys. Rev. Lett. 106 217206) to the case of periodic boundary conditions. These quasilocal operators stem from a two-parameter transfer matrix which employs a highest-weight representation of the quantum group algebra inherent in the Yang-Baxter algebra. In contrast with the open chain, where the conservation law is weakly violated by boundary terms, the quasilocal operators in the periodic chain exactly commute with the Hamiltonian and other local conserved quantities. | |
dc.language | eng | |
dc.publisher | Institute of Physics - IOP | |
dc.publisher | Bristol | |
dc.relation | Journal of Statistical Mechanics: Theory and Experiment | |
dc.rights | Copyright IOP Publishing Ltd and SISSA Medialab srl | |
dc.rights | restrictedAccess | |
dc.subject | Algebraic structures of integrable models | |
dc.subject | Integrable spin chains (vertex models) | |
dc.subject | Quantum integrability (Bethe ansatz) | |
dc.subject | Quantum transport in one-dimension | |
dc.title | Exactly conserved quasilocal operators for the XXZ spin chain | |
dc.type | Artículos de revistas | |