dc.creatorGirolami, Davide
dc.creatorSouza, Alexandre M.
dc.creatorGiovannetti, Vittorio
dc.creatorTufarelli, Tommaso
dc.creatorFilgueiras, Jefferson G.
dc.creatorSarthour, Roberto S.
dc.creatorPinto, Diogo de Oliveira Soares
dc.creatorOliveira, Ivan S.
dc.creatorAdesso, Gerardo
dc.date.accessioned2016-07-21T13:12:10Z
dc.date.accessioned2018-07-04T17:08:29Z
dc.date.available2016-07-21T13:12:10Z
dc.date.available2018-07-04T17:08:29Z
dc.date.created2016-07-21T13:12:10Z
dc.date.issued2014
dc.identifierPhysical Review Letters,College Park : American Physical Society - APS,v. 112, n. 21, p. 210401-1-210401-5 + supplementary materials: sup1-sup-8, May 2014
dc.identifier0031-9007
dc.identifierhttp://www.producao.usp.br/handle/BDPI/50456
dc.identifier10.1103/PhysRevLett.112.210401
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1645207
dc.description.abstractQuantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.
dc.languageeng
dc.publisherAmerican Physical Society - APS
dc.publisherCollege Park
dc.relationPhysical Review Letters
dc.rightsCopyright American Physical Society
dc.rightsrestrictedAccess
dc.titleQuantum discord determines the interferometric power of quantum states
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución