dc.creatorSantos, Lúcio Fernandes Dutra
dc.creatorDias, Rafael L.
dc.creatorRibeiro, Marcela X.
dc.creatorTraina, Agma Juci Machado
dc.creatorJunior, Caetano Traina
dc.date.accessioned2016-02-25T20:36:43Z
dc.date.accessioned2018-07-04T17:07:26Z
dc.date.available2016-02-25T20:36:43Z
dc.date.available2018-07-04T17:07:26Z
dc.date.created2016-02-25T20:36:43Z
dc.date.issued2015-12
dc.identifierIEEE International Symposium on Multimedia, 2015, Miami.
dc.identifier9781509003792
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49671
dc.identifierhttp://dx.doi.org/10.1109/ISM.2015.115
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1644961
dc.description.abstractThis paper proposes a new approach to improve similarity queries with diversity, the Diversity and Visually-Interactive method (DiVI), which employs Visual Data Mining techniques in Content-Based Image Retrieval (CBIR) systems. DiVI empowers the user to understand how the measures of similarity and diversity affect their queries, as well as increases the relevance of CBIR results according to the user judgment. An overview of the image distribution in the database is shown to the user through multidimensional projection. The user interacts with the visual representation changing the projected space or the query parameters, according to his/her needs and previous knowledge. DiVI takes advantage of the users’ activity to transparently reduce the semantic gap faced by CBIR systems. Empirical evaluation show that DiVI increases the precision for querying by content and also increases the applicability and acceptance of similarity with diversity in CBIR systems.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers - IEEE
dc.publisherMiami
dc.relationIEEE International Symposium on Multimedia
dc.rightsCopyright IEEE
dc.rightsclosedAccess
dc.subjectContent-Based Image Retrieval
dc.subjectSemantic Gap
dc.subjectSimilarity With Diversity
dc.subjectVisual Data Mining
dc.titleCombining diversity queries and visual mining to improve content-based image retrieval systems: the DiVI method
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución