dc.creatorFonseca, Erick Rocha
dc.creatorAluisio, Sandra Maria
dc.date.accessioned2016-01-12T11:53:41Z
dc.date.accessioned2018-07-04T17:07:02Z
dc.date.available2016-01-12T11:53:41Z
dc.date.available2018-07-04T17:07:02Z
dc.date.created2016-01-12T11:53:41Z
dc.date.issued2015-11
dc.identifierBrazilian Symposium in Information and Human Language Technology, X, 2015, Natal.
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49460
dc.identifierhttps://aclweb.org/anthology/W/W15/W15-5624.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1644876
dc.description.abstractRecognizing Textual Entailment (RTE) is an NLP task aimed at detecting whether the meaning of a given piece of text entails the meaning of another one. Despite its relevance to many NLP areas, it has been scarcely explored in Portuguese, mainly due to the lack of labeled data. A dataset for RTE must contain both positive and negative examples of entailment, and neither should be obvious: negative examples shouldn’t be completely unrelated texts and positive examples shouldn’t be too similar. We report here an ongoing work to address this difficulty using Vector Space Models (VSMs) to select candidate pairs from news clusters. We compare three different VSMs, and show that Latent Dirichlet Allocation achieves promising results, yielding both good positive and negative examples.
dc.languageeng
dc.publisherUniversidade Federal do Rio Grande do Norte – UFRN
dc.publisherSociedade Brasileira de Computação – SBC
dc.publisherNatal
dc.relationBrazilian Symposium in Information and Human Language Technology, 10.
dc.rightsCopyright Sociedade Brasileira de Computação
dc.rightsopenAccess
dc.titleSemi-automatic construction of a textual entailment dataset: selecting candidates with Vector Space Models
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución