dc.creatorD'Addio, Rafael Martins
dc.creatorManzato, Marcelo Garcia
dc.date.accessioned2015-06-30T13:57:00Z
dc.date.accessioned2018-07-04T17:05:50Z
dc.date.available2015-06-30T13:57:00Z
dc.date.available2018-07-04T17:05:50Z
dc.date.created2015-06-30T13:57:00Z
dc.date.issued2015-04
dc.identifierSymposium on Applied Computing, 30th, 2015, Salamanca.
dc.identifier9781450331968
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49017
dc.identifierhttp://dx.doi.org/10.1145/2695664.2695747
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1644610
dc.description.abstractIn this paper, we propose an approach based on sentiment analysis to describe items in a neighborhood-based collaborative filtering model. We use unstructured users' reviews to produce a vector-based representation that considers the overall sentiment of those reviews towards specific features. We propose and compare two different techniques to obtain and score such features from textual content, namely term-based and aspect-based feature extraction. Finally, our proposal is compared against structured metadata under the same recommendation algorithm, whose results show a significant improvement over the baselines.
dc.languageeng
dc.publisherAssociation for Computing Machinery - ACM
dc.publisherUniversity of Salamanca
dc.publisherSalamanca
dc.relationSymposium on Applied Computing, 30th
dc.rightsCopyright ACM
dc.rightsclosedAccess
dc.subjectRecommender systems
dc.subjectcollaborative filtering
dc.subjectitem representation
dc.subjectsentiment analysis
dc.titleA sentiment-based item description approach for kNN collaborative filtering
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución