dc.creatorTruzzi, Flávio Sales
dc.creatorSilva, Valdinei Freire da
dc.creatorCosta, Anna Helena Reali
dc.creatorCozman, Fabio Gagliardi
dc.date.accessioned2015-07-01T13:02:03Z
dc.date.accessioned2018-07-04T17:05:20Z
dc.date.available2015-07-01T13:02:03Z
dc.date.available2018-07-04T17:05:20Z
dc.date.created2015-07-01T13:02:03Z
dc.date.issued2013-10-20
dc.identifierBrazilian Conference on Intelligent Systems - BRACIS, 2, 2013 Fortaleza
dc.identifier9780769550923
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49020
dc.identifierhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6726452
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1644493
dc.description.abstractThis paper presents a theoretical and empirical analysis of linear programming relaxations to ad network op- timization. The underlying problem is to select a sequence of ads to send to websites; while an optimal policy can be produced using a Markov Decision Process, in practice one must resort to relaxations to bypass the curse of dimensionality. We focus on a state-of-art relaxation scheme based on linear programming. We build a Markov Decision Process that captures the worst-case behavior of such a linear programming relaxation, and derive theoretical guarantees concerning linear relaxations. We then report on extensive empirical evaluation of linear relaxations; our results suggest that for large problems (similar to ones found in practice), the loss of performance introduced by linear relaxations is rather small.
dc.languageeng
dc.publisherSBC
dc.publisherFortaleza
dc.relationBrazilian Conference on Intelligent Systems - BRACIS, 2
dc.rightsIEEE
dc.rightsrestrictedAccess
dc.subjectAd Network
dc.subjectMarkov Decision Proces
dc.subjectLinear Programming
dc.titleAd network optimization evaluating linear relaxations
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución