dc.creatorCarvalho, Victor Augusto Moraes
dc.creatorSpolaôr, Newton
dc.creatorCherman, Everton Alvares
dc.creatorMonard, Maria Carolina
dc.date.accessioned2015-03-20T19:04:08Z
dc.date.accessioned2018-07-04T17:03:36Z
dc.date.available2015-03-20T19:04:08Z
dc.date.available2018-07-04T17:03:36Z
dc.date.created2015-03-20T19:04:08Z
dc.date.issued2014-09
dc.identifierLatin American Computing Conference, 40th, 2014, Montevideo.
dc.identifier9781479961306
dc.identifierhttp://www.producao.usp.br/handle/BDPI/48600
dc.identifierhttp://dx.doi.org/10.1109/CLEI.2014.6965166
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1644099
dc.description.abstractMost supervised learning methods consider that each dataset instance is associated with a unique label. However, there are several domains in which the instances are associated with a set of labels (a multi-label). An alternative to investigate properties of multi-label data and their relationship with the learning performance consists in exploratory data analysis. This approach aims to obtain a better understanding of the data by using different techniques, most of them related to graphic representations. This work proposes ML-EDA, a framework for multi-label exploratory data analysis, which is publicly available in the Internet. The framework has been designed considering extensibility and maintainability as its main goals. Moreover, ML-EDA can directly process, among others, the information provided by MULAN, a framework for multi-label learning frequently used by the community. Some of the ML-EDA facilities are illustrated using benchmark multi-label datasets, highlighting its use as an additional resource to investigate multi-label data.
dc.languagepor
dc.publisherUniversidad de la República
dc.publisherUniversidad Católica del Uruguay
dc.publisherUniversidad ORT Uruguay
dc.publisherUniversidad de Montevideo
dc.publisherUniversidad de la Empresa
dc.publisherMontevideo
dc.relationLatin American Computing Conference, 40th
dc.rightsCopyright IEEE
dc.rightsclosedAccess
dc.subjectmulti-label learning
dc.subjectpublicly available framework
dc.subjectdata visualization
dc.subjectModel-View-Controller
dc.subjectPHP
dc.subjectR
dc.titleA framework for multi-label exploratory data analysis: ML-EDA
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución