dc.creatorBarella, Victor Hugo
dc.creatorCosta, Eduardo de Paula
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.date.accessioned2015-03-24T19:15:51Z
dc.date.accessioned2018-07-04T17:00:06Z
dc.date.available2015-03-24T19:15:51Z
dc.date.available2018-07-04T17:00:06Z
dc.date.created2015-03-24T19:15:51Z
dc.date.issued2014-10
dc.identifierBrazilian Conference on Intelligent Systems, 3th; Encontro Nacional de Inteligência Artificial e Computacional, 11th, 2014, São Carlos.
dc.identifierhttp://www.producao.usp.br/handle/BDPI/48665
dc.identifierhttp://www.lbd.dcc.ufmg.br/colecoes/eniac/2014/0080.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1643301
dc.description.abstractA dataset is said to be imbalanced when its classes are disproportionately represented in terms of the number of instances they contain. This problem is common in applications such as medical diagnosis of rare diseases, detection of fraudulent calls, signature recognition. In this paper we propose an alternative method for imbalanced learning, which balances the dataset using an undersampling strategy. We show that ClusterOSS outperforms OSS, which is the method ClusterOSS is based on. Moreover, we show that the results can be further improved by combining ClusterOSS with random oversampling.
dc.languageeng
dc.publisherUniversidade de São Paulo - USP
dc.publisherUniversidade Federal de São Carlos - UFSCar
dc.publisherCentro de Robótica de São Carlos - CROB
dc.publisherSociedade Brasileira de Computação - SBC
dc.publisherSociedade Brasileira de Automática – SBA
dc.publisherSão Carlos
dc.relationBrazilian Conference on Intelligent Systems, 3th; Encontro Nacional de Inteligência Artificial e Computacional, 11th
dc.rightsopenAccess
dc.subjectImbalanced data
dc.subjectclassification
dc.subjectsampling
dc.subjectclustering
dc.titleClusterOSS: a new undersampling method for imbalanced learning
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución