Artículos de revistas
Identification of a scaled-model riser dynamics through a combined computer vision and adaptive Kalman filter approach
Fecha
2014-01-03Autor
Trigo, Flavio Celso
Martins, Flavius Portella Ribas
Fleury, Agenor de Toledo
Junior, Helio Correa da Silva
Institución
Resumen
Aiming at overcoming the difficulties derived from the traditional camera calibration methods to record the underwater environment of a towing tank where experiments of scaled-model risers are carried on, a computer vision method, combining traditional image processing algorithms and a self-calibration technique was implemented. This method was used to identify the coordinates of control-points viewed on a scaled-model riser submitted to a periodic force applied to its fairlead attachment point. To study the observed motion, the riser was represented as a pseudo-rigid body model (PRBM) and the hypotheses of compliant mechanisms theory were assumed in order to cope with its elastic behavior. The derived Lagrangian equations of motion were linearized and expressed as a state-space model in which the state variables include the generalized coordinates and the unknown generalized forces. The state-vector thus assembled is estimated through a Kalman Filter. The estimation procedure allows the determination of both the generalized forces and the tension along the cable, with statistically proven convergence.