dc.creatorSilva, Valdinei Freire da
dc.creatorKoga, Marcelo Li
dc.creatorCozman, Fabio Gagliardi
dc.creatorCosta, Anna Helena Reali
dc.date.accessioned2014-10-21T17:55:03Z
dc.date.accessioned2018-07-04T16:55:20Z
dc.date.available2014-10-21T17:55:03Z
dc.date.available2018-07-04T16:55:20Z
dc.date.created2014-10-21T17:55:03Z
dc.date.issued2014-01-26
dc.identifierhttp://www.producao.usp.br/handle/BDPI/46415
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1642212
dc.description.abstractIn this paper we improve learning performance of a risk-aware robot facing navigation tasks by employing transfer learning; that is, we use information from a previously solved task to accelerate learning in a new task. To do so, we transfer risk-aware memoryless stochastic abstract policies into a new task. We show how to incorporate risk-awareness into robotic navigation tasks, in particular when tasks are modeled as stochastic shortest path problems. We then show how to use a modified policy iteration algorithm, called AbsProb-PI, to obtain risk-neutral and risk-prone memoryless stochastic abstract policies. Finally, we propose a method that combines abstract policies, and show how to use the combined policy in a new navigation task. Experiments validate our proposals and show that one can find effective abstract policies that can improve robot behavior in navigation problems
dc.languagepor
dc.publisherSpringer
dc.publisherNetherlands
dc.relationRoboCup International Symposium, 17
dc.rightsSpringer
dc.rightsopenAccess
dc.subjectRis-Awareness
dc.subjectMemoryless Stochastic Abstract Policies
dc.subjectTransfer learning
dc.titleReusing risk-aware stochastic abstract policies in robotic navigation learning
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución