dc.creatorAlcaraz, Francisco Castilho
dc.creatorRittenberg, Vladimir
dc.date.accessioned2016-02-24T17:34:04Z
dc.date.accessioned2018-07-04T16:53:38Z
dc.date.available2016-02-24T17:34:04Z
dc.date.available2018-07-04T16:53:38Z
dc.date.created2016-02-24T17:34:04Z
dc.date.issued2011-09
dc.identifierJournal of Statistical Mechanics, Bristol : Institute of Physics - IOP, v. 2011, p. P09030-1-P09030-21, Sept. 2011
dc.identifier1742-5468
dc.identifierhttp://www.producao.usp.br/handle/BDPI/49630
dc.identifier10.1088/1742-5468/2011/09/P09030
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641813
dc.description.abstractIn a conformal invariant one-dimensional stochastic model, a certain nonlocal perturbation takes the system to a new massless phase of a special kind. The ground-state of the system is an adsorptive state. Part of the finite-size scaling spectrum of the evolution Hamiltonian stays unchanged but some levels go exponentially to zero for large lattice sizes, becoming degenerate with the ground-state. As a consequence one observes the appearance of quasistationary states which have a relaxation time which grows exponentially with the size of the system. Several initial conditions have singled out a quasistationary state which has in the finite-size scaling limit the same properties as the stationary state of the conformal invariant model.
dc.languageeng
dc.publisherInstitute of Physics - IOP
dc.publisherBristol
dc.relationJournal of Statistical Mechanics: Theory and Experiment
dc.rightsCopyright IOP Publishing Ltd. and SISSA
dc.rightsrestrictedAccess
dc.subjectDriven diffusive systems (theory)
dc.subjectPhase transitions into absorbing states (theory)
dc.subjectStochastic particle dynamics (theory)
dc.subjectMetastable states
dc.titleFrom conformal invariance to quasistationary states
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución