dc.creatorCerri, Ricardo
dc.creatorBarros, Rodrigo C.
dc.creatorFreitas, Alex A.
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.date.accessioned2014-09-04T18:15:19Z
dc.date.accessioned2018-07-04T16:51:52Z
dc.date.available2014-09-04T18:15:19Z
dc.date.available2018-07-04T16:51:52Z
dc.date.created2014-09-04T18:15:19Z
dc.date.issued2014-07
dc.identifierInternational Conference on Genetic and Evolutionary Computation, 16th, 2014, Vancouver.
dc.identifier9781450328814
dc.identifierhttp://www.producao.usp.br/handle/BDPI/46091
dc.identifierhttp://dx.doi.org/10.1145/2598394.2611384
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641407
dc.description.abstractHierarchical Multi-Label Classification (HMC) is a complex classification problem where instances can be classified into many classes simultaneously, and these classes are organized in a hierarchical structure, having subclasses and superclasses. In this paper, we investigate the HMC problem of assign functions to proteins, being each function represented by a class (term) in the Gene Ontology (GO) taxonomy. It is a very difficult task, since the GO taxonomy has thousands of classes. We propose a Genetic Algorithm (GA) to generate HMC rules able to classify a given protein in a set of GO terms, respecting the hierarchical constraints imposed by the GO taxonomy. The proposed GA evolves rules with propositional and relational tests. Experiments using ten protein function datasets showed the potential of the method when compared to other literature methods.
dc.languageeng
dc.publisherAssociation for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation - ACM SIGEVO
dc.publisherVancouver
dc.relationInternational Conference on Genetic and Evolutionary Computation, 16th
dc.rightsCopyright ACM
dc.rightsrestrictedAccess
dc.subjectHierarchical Multi-Label Classification
dc.subjectGene Ontology
dc.subjectPropositional Rules
dc.subjectRelational Rules
dc.subjectGenetic Algorithms
dc.subjectBioinformatics
dc.titleEvolving relational hierarchical classification rules for predicting gene ontology-based protein functions
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución