dc.creatorValejo, Alan Demétrius Baria
dc.creatorValverde-Rebaza, Jorge Carlos
dc.creatorDrury, Brett Mylo
dc.creatorLopes, Alneu de Andrade
dc.date.accessioned2014-11-24T19:50:14Z
dc.date.accessioned2018-07-04T16:51:48Z
dc.date.available2014-11-24T19:50:14Z
dc.date.available2018-07-04T16:51:48Z
dc.date.created2014-11-24T19:50:14Z
dc.date.issued2014-07
dc.identifierInternational Database Engineering & Applications Symposium, 18th, 2014, Porto.
dc.identifier9781450326278
dc.identifierhttp://www.producao.usp.br/handle/BDPI/46712
dc.identifierhttp://dx.doi.org/10.1145/2628194.2628227
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641394
dc.description.abstractThe multilevel graph partitioning strategy aims to reduce the computational cost of the partitioning algorithm by applying it on a coarsened version of the original graph. This strategy is very useful when large-scale networks are analyzed. To improve the multilevel solution, refinement algorithms have been used in the uncorsening phase. Typical refinement algorithms exploit network properties, for example minimum cut or modularity, but they do not exploit features from domain specific networks. For instance, in social networks partitions with high clustering coefficient or similarity between vertices indicate a better solution. In this paper, we propose a refinement algorithm (RSim) which is based on neighborhood similarity. We compare RSim with: 1. two algorithms from the literature and 2. one baseline strategy, on twelve real networks. Results indicate that RSim is competitive with methods evaluated for general domains, but for social networks it surpasses the competing refinement algorithms.
dc.languageeng
dc.publisherAssociation for Computing Machinery - ACM
dc.publisherInstituto Superior de Engenharia do Porto - ISEP
dc.publisherPorto
dc.relationInternational Database Engineering & Applications Symposium, 18th
dc.rightsCopyright ACM
dc.rightsclosedAccess
dc.subjectGraph Clustering
dc.subjectMultilevel Partitioning
dc.subjectRefinement
dc.subjectComplex Networks
dc.subjectSocial Networks
dc.titleMultilevel refinement based on neighborhood similarity
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución