dc.creatorVallim, Rosane Maria Maffei
dc.creatorAndrade Filho, José Augusto
dc.creatorMello, Rodrigo Fernandes de
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.creatorGama, João
dc.date.accessioned2014-09-24T22:07:47Z
dc.date.accessioned2018-07-04T16:51:44Z
dc.date.available2014-09-24T22:07:47Z
dc.date.available2018-07-04T16:51:44Z
dc.date.created2014-09-24T22:07:47Z
dc.date.issued2014
dc.identifierIntelligent Data Analysis, Amsterdam, v.18, n.2, p.181-201, 2014
dc.identifier1088-467X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/46190
dc.identifier10.3233/IDA-140636
dc.identifierhttp://dx.doi.org/10.3233/IDA-140636
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641379
dc.description.abstractThe ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.
dc.languageeng
dc.publisherIOS Press
dc.publisherAmsterdam
dc.relationIntelligent Data Analysis
dc.rightsCopyright IOS Press and the authors
dc.rightsrestrictedAccess
dc.subjectChange detection
dc.subjectclustering
dc.subjectnovelty detection
dc.subjectdata streams
dc.subjectunsupervised learning
dc.titleUnsupervised density-based behavior change detection in data streams
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución