dc.creatorIturriaga, Leonelo
dc.creatorMassa, Eugenio Tommaso
dc.creatorSánchez, Justino
dc.creatorUbilla, Pedro
dc.date.accessioned2014-08-07T13:07:35Z
dc.date.accessioned2018-07-04T16:51:21Z
dc.date.available2014-08-07T13:07:35Z
dc.date.available2018-07-04T16:51:21Z
dc.date.created2014-08-07T13:07:35Z
dc.date.issued2014-07
dc.identifierMathematical News / Mathematische Nachrichten, Weinheim, v.287, n.10, p.1131-1141, 2014
dc.identifier0025-584X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/45956
dc.identifier10.1002/mana.201100285
dc.identifierhttp://dx.doi.org/10.1002/mana.201100285
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641291
dc.description.abstractWe study existence, multiplicity, and the behavior, with respect to λ, of positive radially symmetric solutions of − 'delta'u = λh(x, u) in annular domains in 'R POT.N', N ≥ 2. The nonlinear term has a superlinear local growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive and concave function a. For this, we combine several methods such as the sub and supersolutions method, a priori estimates and degree theory.
dc.languageeng
dc.publisherWiley-VCH Verlag GmbH
dc.publisherWeinheim
dc.relationMathematical News / Mathematische Nachrichten
dc.rightsCopyright WILEY-VCH Verlag GmbH & Co. KGaA
dc.rightsrestrictedAccess
dc.subjectPositive solutions
dc.subjectelliptic equation
dc.subjectannulus
dc.subjectBoundary value problems for second-order elliptic equations
dc.titlePositive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución