dc.creatorMadeo, Renata Cristina Barros
dc.creatorLima, Clodoaldo Aparecido de Moraes
dc.creatorPeres, Sarajane Marques
dc.date.accessioned2015-01-08T17:49:00Z
dc.date.accessioned2018-07-04T16:51:17Z
dc.date.available2015-01-08T17:49:00Z
dc.date.available2018-07-04T16:51:17Z
dc.date.created2015-01-08T17:49:00Z
dc.date.issued2013-03
dc.identifierProceedings, New York : ACM, 2013
dc.identifier9781450316569
dc.identifierhttp://www.producao.usp.br/handle/BDPI/46839
dc.identifierhttp://dl.acm.org/citation.cfm?doid=2480362.2480373
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641275
dc.description.abstractGesture analysis has been widely used for developing new methods of human-computer interaction. The advancement reached in the gesture analysis area is also motivating its application to automate tasks related to discourse analysis, such as the gesture phases segmentation task. In this paper, we present an initiative that aims at segmenting gestures, especially considering the \units" { the larger grain involved in gesture phases segmentation. Thereunto, we have captured the gestures using a Xbox KinectTMdevice, modeled the problem as a classi cation task, and applied Support Vector Machines. Moreover, aiming at taking advantage from the temporal aspects involved in the problem, we have used several types of data pre-processing in order to consider time domain and frequency domain features
dc.languageeng
dc.publisherACM Special Interest Group on Applied Computing
dc.publisherPolytechnic Institute of Coimbra (IPC)
dc.publisherInstitute of Systems and Robotics, Faculty of Sciences and Technology of University of Coimbra (ISR-FCTUC)
dc.publisherCaixa Geral de Depositos
dc.publisherCoimbra
dc.relationSymposium on Applied Computing - SAC (28. 2013 Coimbra, Portugal)
dc.rightsCopyright 2013 ACM
dc.rightsrestrictedAccess
dc.subjectGesture analysis
dc.subjectGesture segmentation
dc.subjectGesture unit
dc.subjectSupport vector machine
dc.subjectTemporal modeling
dc.titleGesture unit segmentation using support vector machines: segmenting gestures from rest positions
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución