dc.creatorLi, Jundong
dc.creatorSander, Jörg
dc.creatorCampello, Ricardo José Gabrielli Barreto
dc.creatorZimek, Arthur
dc.date.accessioned2014-07-10T18:18:49Z
dc.date.accessioned2018-07-04T16:50:49Z
dc.date.available2014-07-10T18:18:49Z
dc.date.available2018-07-04T16:50:49Z
dc.date.created2014-07-10T18:18:49Z
dc.date.issued2014
dc.identifierLecture Notes in Artificial Intelligence, Cham, v.8436, p.179-190, 2014
dc.identifier0302-9743
dc.identifierhttp://www.producao.usp.br/handle/BDPI/45673
dc.identifier10.1007/978-3-319-06483-3_16
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-06483-3_16
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641169
dc.description.abstractThe semi-supervised, density-based clustering algorithm SSDBSCAN extracts clusters of a given dataset from different density levels by using a small set of labeled objects. A critical assumption of SSDBSCAN is, however, that at least one labeled object for each natural cluster in the dataset is provided. This assumption may be unrealistic when only a very few labeled objects can be provided, for instance due to the cost associated with determining the class label of an object. In this paper, we introduce a novel active learning strategy to select “most representative” objects whose class label should be determined as input for SSDBSCAN. By incorporating a Laplacian Graph Regularizer into a Local Linear Reconstruction method, our proposed algorithm selects objects that can represent the whole data space well. Experiments on synthetic and real datasets show that using the proposed active learning strategy, SSDBSCAN is able to extract more meaningful clusters even when only very few labeled objects are provided.
dc.languageeng
dc.publisherSpringer International Publishing
dc.publisherCham
dc.relationLecture Notes in Artificial Intelligence
dc.rightsCopyright Springer International Publishing
dc.rightsclosedAccess
dc.subjectActive learning
dc.subjectSemi-supervised clustering
dc.subjectDensity-based clustering
dc.titleActive learning strategies for semi-supervised DBSCAN
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución