dc.creatorFilho, Mário de Castro Andrade
dc.creatorChen, Ming-Hui
dc.creatorIbrahim, Joseph G.
dc.creatorKlein, John P.
dc.date.accessioned2014-07-03T21:57:30Z
dc.date.accessioned2018-07-04T16:50:47Z
dc.date.available2014-07-03T21:57:30Z
dc.date.available2018-07-04T16:50:47Z
dc.date.created2014-07-03T21:57:30Z
dc.date.issued2014-03
dc.identifierScandinavian Journal of Statistics, Malden, v.41, n.1, p.187-199, 2014.
dc.identifier0303-6898
dc.identifierhttp://www.producao.usp.br/handle/BDPI/45636
dc.identifier10.1111/sjos.12010
dc.identifierhttp://dx.doi.org/10.1111/sjos.12010
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641160
dc.description.abstractIn this paper, we propose a general class of Gamma frailty transformation models for multivariate survival data. The transformation class includes the commonly used proportional hazards and proportional odds models. The proposed class also includes a family of cure rate models. Under an improper prior for the parameters, we establish propriety of the posterior distribution. A novel Gibbs sampling algorithm is developed for sampling from the observed data posterior distribution. A simulation study is conducted to examine the properties of the proposed methodology. An application to a data set from a cord blood transplantation study is also reported.
dc.languageeng
dc.publisherJohn Wiley and Sons
dc.publisherMalden
dc.relationScandinavian Journal of Statistics
dc.rightsCopyright John Wiley and Sons
dc.rightsrestrictedAccess
dc.subjectcure rate
dc.subjectGamma frailty
dc.subjectGibbs sampler
dc.subjectpiecewise exponential model
dc.subjectproportional hazards model
dc.subjectproportional odds model
dc.titleBayesian transformation models for multivariate survival data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución