dc.creator | Juriaans, Orlando Stanley | |
dc.creator | Filho, Antonio Calixto de Souza | |
dc.date.accessioned | 2014-07-02T17:36:51Z | |
dc.date.accessioned | 2018-07-04T16:50:19Z | |
dc.date.available | 2014-07-02T17:36:51Z | |
dc.date.available | 2018-07-04T16:50:19Z | |
dc.date.created | 2014-07-02T17:36:51Z | |
dc.date.issued | 2013-04-01 | |
dc.identifier | Journal of Algebra, Amsterdam, v. 379, p. 314-321, apr. 2013 | |
dc.identifier | 0021-8693 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/45586 | |
dc.identifier | 10.1016/j.jalgebra.2012.12.025 | |
dc.identifier | http://www.sciencedirect.com/science/article/pii/S0021869313000252# | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1641060 | |
dc.description.abstract | In Juriaans et al. (2009) [9] we constructed pairs of units u,v in Z-orders of a quaternion algebra over View the MathML source, d a positive and square free integer with View the MathML source, such that 〈un,vn〉 is free for some n∈N. Here we extend this result to any imaginary quadratic extension of Q, thus including matrix algebras. More precisely, we show that 〈un,vn〉 is a free group for all n⩾1 and d>2 and for d=2 and all n⩾2. The units we use arise from Pellʼs and Gaussʼ equations. | |
dc.language | eng | |
dc.publisher | Amsterdam | |
dc.relation | Journal of Algebra | |
dc.rights | restrictedAccess | |
dc.subject | Hyperbolic groups | |
dc.subject | Quaternion algebras | |
dc.subject | Free groups | |
dc.subject | Free semigroups | |
dc.subject | Group rings | |
dc.subject | Units | |
dc.subject | Möbius transformation | |
dc.title | Free groups in quaternion algebras | |
dc.type | Artículos de revistas | |