dc.creatorJuriaans, Orlando Stanley
dc.creatorFilho, Antonio Calixto de Souza
dc.date.accessioned2014-07-02T17:36:51Z
dc.date.accessioned2018-07-04T16:50:19Z
dc.date.available2014-07-02T17:36:51Z
dc.date.available2018-07-04T16:50:19Z
dc.date.created2014-07-02T17:36:51Z
dc.date.issued2013-04-01
dc.identifierJournal of Algebra, Amsterdam, v. 379, p. 314-321, apr. 2013
dc.identifier0021-8693
dc.identifierhttp://www.producao.usp.br/handle/BDPI/45586
dc.identifier10.1016/j.jalgebra.2012.12.025
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0021869313000252#
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1641060
dc.description.abstractIn Juriaans et al. (2009) [9] we constructed pairs of units u,v in Z-orders of a quaternion algebra over View the MathML source, d a positive and square free integer with View the MathML source, such that 〈un,vn〉 is free for some n∈N. Here we extend this result to any imaginary quadratic extension of Q, thus including matrix algebras. More precisely, we show that 〈un,vn〉 is a free group for all n⩾1 and d>2 and for d=2 and all n⩾2. The units we use arise from Pellʼs and Gaussʼ equations.
dc.languageeng
dc.publisherAmsterdam
dc.relationJournal of Algebra
dc.rightsrestrictedAccess
dc.subjectHyperbolic groups
dc.subjectQuaternion algebras
dc.subjectFree groups
dc.subjectFree semigroups
dc.subjectGroup rings
dc.subjectUnits
dc.subjectMöbius transformation
dc.titleFree groups in quaternion algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución