dc.creatorDomitrz, Wojciech
dc.creatorRios, Pedro Paulo de Magalhães
dc.date.accessioned2014-05-15T18:17:04Z
dc.date.accessioned2018-07-04T16:47:47Z
dc.date.available2014-05-15T18:17:04Z
dc.date.available2018-07-04T16:47:47Z
dc.date.created2014-05-15T18:17:04Z
dc.date.issued2014-04
dc.identifierGeometriae Dedicata, Dordrecht, v.169, n.1, p.361-382, 2014
dc.identifierhttp://www.producao.usp.br/handle/BDPI/44850
dc.identifier10.1007/s10711-013-9861-2
dc.identifierhttp://dx.doi.org/10.1007/s10711-013-9861-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1640479
dc.description.abstractWe study the global centre symmetry set (GCS) of a smooth closed submanifold 'M POT.M'⊂'R POT.N', n≤2m . The GCS includes both the centre symmetry set defined by Janeczko (Geometria Dedicata 60:9–16, 1996) and the Wigner caustic defined by Berry (Philos Trans R Soc Lond A 287:237–271, 1977). The definition of GCS(M) uses the concept of an affine λ-equidistant of M, 'E IND.λ'(M), λ∈R . When M=L is a Lagrangian submanifold in the affine symplectic space ('R POT.2M', [...]) , we present generating families for singularities of 'E IND.λ'(L) and prove that the caustic of any simple stable Lagrangian singularity in a 4m-dimensional Lagrangian fibre bundle is realizable as the germ of an affine equidistant of some L⊂'R POT.2M'. We characterize the criminant part of GCS(L) in terms of bitangent hyperplanes to L. Then, after presenting the appropriate equivalence relation to be used in this Lagrangian case, we classify the affine-Lagrangian stable singularities of GCS(L) . In particular we show that, already for a smooth closed convex curve L⊂'R POT.2' , many singularities of GCS(L) which are affine stable are not affine-Lagrangian stable.
dc.languageeng
dc.publisherSpringer
dc.publisherDordrecht
dc.relationGeometriae Dedicata
dc.rightshttp://creativecommons.org/licenses/by/3.0/br/
dc.rightsCopyright The Author(s)
dc.rightsopenAccess
dc.subjectCentre symmetry set
dc.subjectSymplectic geometry
dc.subjectLagrangian singularities
dc.subjectSingularities of differentiable mappings
dc.subjectClassification; finite determinacy of map germs
dc.subjectLagrangian submanifolds; Maslov index
dc.subjectStability
dc.subjectNormal forms
dc.titleSingularities of equidistants and global centre symmetry sets of Lagrangian submanifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución