dc.creatorAlcaraz, Francisco Castilho
dc.creatorRittenberg, Vladimir
dc.date.accessioned2014-06-27T00:41:48Z
dc.date.accessioned2018-07-04T16:45:32Z
dc.date.available2014-06-27T00:41:48Z
dc.date.available2018-07-04T16:45:32Z
dc.date.created2014-06-27T00:41:48Z
dc.date.issued2013-09
dc.identifierJournal of Statistical Mechanics, Bristol : Institute of Physics - IOP, v. 2013, n. 9, p. P09010-1-P09010-29, Sept. 2013
dc.identifier1742-5468
dc.identifierhttp://www.producao.usp.br/handle/BDPI/45506
dc.identifier10.1088/1742-5468/2013/09/P09010
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1639967
dc.description.abstractWe present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.
dc.languageeng
dc.publisherInstitute of Physics - IOP
dc.publisherBristol
dc.relationJournal of Statistical Mechanics
dc.rightsCopyright IOP Publishing Ltd and SISSA Medialab srl
dc.rightsrestrictedAccess
dc.subjectConformal eld theory
dc.subjectIntegrable spin chains (vertex models)
dc.subjectCritical exponents and amplitudes (theory)
dc.subjectStochastic particle dynamics (theory)
dc.titleNonlocal asymmetric exclusion process on a ring and conformal invariance
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución