dc.creator | Alcaraz, Francisco Castilho | |
dc.creator | Rittenberg, Vladimir | |
dc.date.accessioned | 2014-06-27T00:41:48Z | |
dc.date.accessioned | 2018-07-04T16:45:32Z | |
dc.date.available | 2014-06-27T00:41:48Z | |
dc.date.available | 2018-07-04T16:45:32Z | |
dc.date.created | 2014-06-27T00:41:48Z | |
dc.date.issued | 2013-09 | |
dc.identifier | Journal of Statistical Mechanics, Bristol : Institute of Physics - IOP, v. 2013, n. 9, p. P09010-1-P09010-29, Sept. 2013 | |
dc.identifier | 1742-5468 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/45506 | |
dc.identifier | 10.1088/1742-5468/2013/09/P09010 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1639967 | |
dc.description.abstract | We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value. | |
dc.language | eng | |
dc.publisher | Institute of Physics - IOP | |
dc.publisher | Bristol | |
dc.relation | Journal of Statistical Mechanics | |
dc.rights | Copyright IOP Publishing Ltd and SISSA Medialab srl | |
dc.rights | restrictedAccess | |
dc.subject | Conformal eld theory | |
dc.subject | Integrable spin chains (vertex models) | |
dc.subject | Critical exponents and amplitudes (theory) | |
dc.subject | Stochastic particle dynamics (theory) | |
dc.title | Nonlocal asymmetric exclusion process on a ring and conformal invariance | |
dc.type | Artículos de revistas | |